《考研數學二大綱》是2013年高等教育出版社出版的圖書,作者是全國碩士研究生入學統一考試輔導用書編委會。該書為全國碩士研究生入學統一考試數學二考研大綱解析。適用於所有的數學二的考研數學。
基本介紹
- 書名:考研數學二大綱
- 又名:考研數學二
- 類別:大綱解析
- 出版時間:2013年
- 裝幀:平裝
- 開本:16開
考試科目,形式與結構,內容高等數學,函式、極限、連續,一元函式微分,一元函式積分,多元函式微積分學,常微分方程,內容線性代數,
考試科目
(一)高等數學
(二)線性代數
形式與結構
(一)試卷滿分及考試時間
1.試卷滿分為150分
2.考試時間為180分鐘。
(二)答題方式
1.答題方式為閉卷
2.筆試。
(三)試卷內容結構
1.高等數學 78%
2.線性代數 22%
(四)卷題型結構
1.試卷題型結構為:
單項選擇題 8小題,每題4分,共32分
2.填空題 6小題,每題4分,共24分
3.解答題(包括證明題) 9小題,共94分
內容高等數學
函式、極限、連續
考試內容
函式的概念及表示法函式的有界性、單調性、周期性和奇偶性複合函式、反函式、分段函式和隱函式基本初等函式的性質及其圖形 初等函式函式關係的建立數列極限與函式極限的定義及其性質 函式的左極限和右極限無窮小量和無窮大量的概念及其關係無窮小量的性質及無窮小量的比較 極限的四則運算 極限存在的兩個準則:單調有界準則和夾逼準則兩個重要極限:
函式連續的概念 函式間斷點的類型 初等函式的連續性 閉區間上連續函式的性質
考試要求
1. 理解函式的概念,掌握函式的表示法,會建立套用問題的函式關係.
4. 掌握基本初等函式的性質及其圖形,了解初等函式的概念.
6. 掌握極限的性質及四則運算法則
7. 掌握極限存在的兩個準則,並會利用它們求極限,掌握利用兩個重要極限求極限的方法.
一元函式微分
考試要求
3. 了解高階導數的概念,會求簡單函式的高階導數.
7. 理解函式的極值概念,掌握用導數判斷函式的單調性和求函式極值的方法,掌握函式最大值和最小值的求法及其套用.
8. 會用導數判斷函式圖形的凹凸性(註:在區間(a,b)內,設函式f(x)具有二階導數。當 f''(x)>=0時,f(x)的圖形是凹的;當f''(x)<=0時,f(x)的圖形是凸的),會求函式圖形的拐點以及水平、鉛直和斜漸近線,會描繪函式的圖形.
一元函式積分
考試內容:原函式和不定積分的概念 不定積分的基本性質 基本積分公式定積分的概念和基本性質 定積分中值定理積分上限的函式及其導數 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法有理函式、三角函式的有理式和簡單無理函式的積分反常(廣義)積分 定積分的套用
考試要求
1. 理解原函式的概念,理解不定積分和定積分的概念.
2. 掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法.
3. 會求有理函式、三角函式有理式和簡單無理函式的積分.
4. 理解積分上限的函式,會求它的導數,掌握牛頓一萊布尼茨公式.
5. 了解反常積分的概念,會計算反常積分.
多元函式微積分學
考試要求
1. 了解多元函式的概念,了解二元函式的幾何意義.
4. 了解多元函式極值和條件極值的概念,掌握多元函式極值存在的必要條件,了解二元函式極值存在的充分條件,會求二元函式的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函式的最大值和最小值,並求解一些簡單的套用問題.
常微分方程
考試要求
1. 了解微分方程及其階、解、通解、初始條件和特解等概念.
2. 掌握變數可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程
3. 會用降階法解下列形式的微分方程: , 和 .
4. 理解二階線性微分方程解的性質及解的結構定理.
5. 掌握二階常係數齊次線性微分方程的解法,並會解某些高於二階的常係數齊次線性微分方程.
7. 會用微分方程解決一些簡單的套用問題.
內容線性代數
考試內容:行列式的概念和基本性質 行列式按行(列)展開定理
考試要求
1.了解行列式的概念,掌握行列式的性質.
2.會套用行列式的性質和行列式按行(列)展開定理計算行列式.
考試內容
考試要求
2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質.
3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件.理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.
5.了解分塊矩陣及其運算.
考試要求
1.理解n維向量、向量的線性組合與線性表示的概念.
2.理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質及判別法.
3.了解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩.
4.了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩的關係
考試內容:線性方程組的克萊姆(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件 線性方程組解的性質和解的結構 齊次線性方程組的基礎解系和通解 非齊次線性方程組的通解
考試要求
1.會用克萊姆法則.
2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件.
3.理解齊次線性方程組的基礎解系及通解的概念,掌握齊次線性方程組的基礎解系和通解的求法.
4.理解非齊次線性方程組的解的結構及通解的概念.
5.會用初等行變換求解線性方程組.
矩陣的特徵值和特徵向量
考試要求
1.理解矩陣的特徵值和特徵向量的概念及性質,會求矩陣的特徵值和特徵向量.
2.理解矩陣相似的概念、性質及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣.
3.理解實對稱矩陣的特徵值和特徵向量的性質.
考試要求
1.了解二次型的概念,會用矩陣形式表示二次型,了解契約變換與契約矩陣的概念.
2.了解二次型的秩的概念,了解二次型的標準形、規範形等概念,了解慣性定理,會用正交變換和配方法化二次型為標準形.