定義
如果:AA
T=E(E為單位矩陣,A
T表示“矩陣A的轉置矩陣”。)或A
TA=E,則n階
實矩陣A稱為正交矩陣,若A為
正交陣,則滿足以下條件:
1)AT是正交矩陣
2)(E為單位矩陣)
3)A的各行是單位向量且兩兩正交
4)A的各列是單位向量且兩兩正交
5)(Ax,Ay)=(x,y)x,y∈R
6)|A|=1或-1
8)正交矩陣通常用字母Q表示。
(9)舉例:
若A=[r11r12r13;r21r22r23;r31r32r33],則有:
定理
1.方陣A正交的充要條件是A的行(列)向量組是單位正交向量組;
2.方陣A正交的充要條件是A的n個行(列)向量是n維向量空間的一組標準正交基;
3.A是正交矩陣的充要條件是:A的行向量組兩兩正交且都是單位向量;
4.A的列向量組也是正交單位向量組。
5.正交方陣是歐氏空間中標準正交基到標準正交基的過渡矩陣。
舉例
下面是一些小正交矩陣的例子和可能的解釋。
恆等變換
恆等變換就是把一個解析式變成與它恆等的另一個解析式.使用恆等變換往往是在碰到的問題比較繁雜、一時難以下手的時候,通過恆等變換把要解決的問題簡化,由未知到已知,最終解決問題.所以,恆等變換的特點就是:將複雜的問題通過表達形式的變形轉化成容易解決的簡單問題。
X軸反射
反射變換(refIection)又稱為鏡像反射或鏡像變換,類似於一個對象在一面鏡子中的影子。二維平面上給定一條直線,我們可以作關於直線的鏡像反射;三維空間中,給定一個平面,我們可以做關於這個平面的鏡像反射。對於矩陣變換如圖1所示。
關於正交矩陣其他解釋還有:旋轉反演(rotoinversion):軸(0,-3/5,4/5),角度90°;置換坐標軸等。
基本構造
低維度構造
最簡單的正交矩陣是1×1矩陣[1]和[−1],它們可分別解釋為恆等和實數線針對原點的反射。
它的正交性要求滿足三個方程,在考慮第一個方程時,不丟失一般性而設
p=cosθ,
q=sinθ;因此要么
t=−
q,
u=
p要么
t=
q,
u=−
p。我們可以解釋第一種情況為
旋轉θ(θ=0是
單位矩陣),第二個解釋為針對在角θ/2的直線的反射。
旋轉反射在45°的反射對換
x和
y;它是
置換矩陣,在每列和每行帶有一個單一的1(其他都是0):單位矩陣也是置換矩陣。
反射是它自己的逆,這蘊涵了反射矩陣是
對稱的(等於它的轉置矩陣)也是正交的。兩個
旋轉矩陣的積是一個旋轉矩陣,兩個反射矩陣的積也是旋轉矩陣。
更高維度構造
如果不管維度,總是有可能把正交矩陣按純旋轉與否來分類的,但是對於3×3矩陣和更高維度矩陣要比反射複雜多了。例如,表示通過原點的
反演和關於
z軸的旋轉反演(
逆時針旋轉90°後針對
x-
y平面反射,或逆時針旋轉270°後對原點反演)。旋轉也變得更加複雜;它們不再由一個角來刻畫,並可能影響多於一個平面子空間。儘管經常以一個軸和角來描述3×3
旋轉矩陣,在這個維度
旋轉軸的存在是偶然的性質而不適用於其他維度。但是,一般適用的基本建造板塊如置換、反射、和旋轉可以滿足這些情況。
基本變換
正交矩陣的最基本置換是換位(transposition),通過交換單位矩陣的兩行得到。任何
n×
n置換矩陣都可以構造為最多
n−1次換位的積。構造自
非零向量v的Householder反射,這裡的分子是
對稱矩陣,而分母是
v的平方量的一個數。這是在垂直於
v的超平面上的反射(取負平行於
v任何
向量分量)。如果
v是
單位向量,則
Q=
I−2
vv就足夠了。Householder反射典型的用於同時置零一列的較低部分。任何
n×
n正交矩陣都可以構造為最多
n次這種反射的積。
Givens旋轉作用於由兩個
坐標軸所生成的二維(平面)子空間上,按選定角度旋轉。它典型的用來置零一個單一的次對角線元素(subdiagonalentry)。任何
n×
n的
旋轉矩陣都可以構造為最多
n(
n−1)/2次這種旋轉的積。在3x3矩陣的情況下,三個這種旋轉就足夠了;並且通過固定這個序列,我們可以用經常叫做
歐拉角的三個角來(儘管不唯一)描述所有3×3旋轉矩陣。
雅可比旋轉有同Givens旋轉一樣的形式,但是被用做
相似變換,選擇來置零2×2子矩陣的兩個遠離對角元素(off-diagonalentry) 。
基本特性
矩陣性質
實數方塊矩陣是正交的,若且唯若它的列形成了帶有普通歐幾里得
點積的
歐幾里得空間R的正交規範基,它為真若且唯若它的行形成
R的正交基。假設帶有正交(非正交規範)列的矩陣叫正交矩陣可能是誘人的,但是這種矩陣沒有特殊價值而沒有特殊名字;他們只是
MM=
D,
D是
對角矩陣。
1.逆也是正交陣;
2.積也是正交陣;
3.行列式的值為正1或負1。
任何正交矩陣的
行列式是+1或−1。這可從關於行列式的如下基本事實得出:(註:反過來不是真的;有+1行列式不保證
正交性,即使帶有正交列,可由下列反例證實。)
對於置換矩陣,行列式是+1還是−1匹配置換是偶還是奇的標誌,行列式是行的交替函式。
比行列式限制更強的是正交矩陣總可以是在
複數上可對角化來展示
特徵值的完全的集合,它們全都必須有(複數)絕對值1。
群性質
正交矩陣的逆是正交的,兩個正交矩陣的積是正交的。事實上,所有
n×
n正交矩陣的集合滿足群的所有公理。它是
n(
n−1)/2維的緊緻
李群,叫做
正交群並指示為
O(
n)。
行列式為+1的正交矩陣形成了
路徑連通的子群指標為2的
O(
n)
正規子群,叫做
旋轉的
特殊正交群SO(
n)。
商群O(
n)/
SO(
n)同構於
O(1),帶有依據行列式選擇[+1]或[−1]的投影映射。帶有行列式−1的正交矩陣不包括
單位矩陣,所以不形成子群而只是
陪集;它也是(分離的)連通的。所以每個正交群被分為兩個部分;因為投影映射分裂,
O(
n)是
SO(
n)與
O(1)的
半直積。用實用術語說,一個相當的陳述是任何正交矩陣可以通過採用一個
旋轉矩陣並可能取負它的一列來生成,如我們在2×2矩陣中看到的。如果
n是奇數,則半直積實際上是
直積,任何正交矩陣可以通過採用一個旋轉矩陣並可能取負它的所有列來生成。
考慮(n+1)×(n+1)右底元素等於1的正交矩陣。最後一列(和最後一行)的餘下元素必須是零,而任何兩個這種矩陣的積有同樣的形式。餘下的矩陣是n×n正交矩陣;因此O(n)是O(n+1)(和所有更高維群)的子群。
因為Householder正交矩陣形式的基本反射可把任何正交矩陣簡約成這種約束形式,一系列的這種反射可以把任何正交矩陣變回
單位矩陣;因此正交群是反射群。最後一列可以被固定為任何
單位向量,並且每種選擇給出不同的
O(
n)在
O(
n+1)中的複本;以這種方式
O(
n+1)是在單位球
S與纖維
O(
n)上的叢。
類似的,
SO(
n)是
SO(
n+1)的子群;任何特定正交矩陣可以使用類似過程通過Givens平面旋轉來生成。叢結構持續:
SO(
n)↪
SO(
n+1)→
S。一個單一旋轉可以在最後一列的第一行生成一個零,而
n−1次旋轉序列將置零
n×
n旋轉矩陣的除了最後一列的最後一行的所有元素。因為平面是固定的,每次旋轉只有一個自由度,就是它的角度。通過歸納,
SO(
n)因此有自由度,
O(
n)也是。置換矩陣簡單一些;它們不形成李群,只是一個有限群,
n!次
對稱群Sn。通過同類的討論,
Sn是
Sn+1的子群。偶置換生成行列式+1的置換矩陣的子群,
n!/2次
交錯群。
規範形式
更廣泛的說,任何正交矩陣的效果分離到在正交二維空間上的獨立動作。就是說,如果
Q是狹義正交的,則你可以找到(旋轉)改變基的一個正交矩陣
P,把
Q帶回到分塊對角形式:(
n偶數),(
n奇數)。這裡的矩陣
R1,...,
Rk是2×2
旋轉矩陣,而餘下的元素是零。作為例外,一個旋轉塊可以是對角的,±
I。因此如果需要的話取負一列,並注意2×2反射可對角化為+1和−1,任何正交矩陣可變為如下形式,矩陣
R1,…,
Rk給出位於
複平面中
單位圓上的特徵值的共軛對;所以這個分解複合確定所有帶有絕對值1的
特徵值。如果
n是奇數,至少有一個實數特徵值+1或−1;對於3×3旋轉,關聯著+1的特徵向量是
旋轉軸。
理論實踐
有多種原由使正交矩陣對理論和實踐是重要的。
n×
n正交矩陣形成了一個群,即指示為
O(
n)的
正交群,它和它的子群廣泛的用在數學和物理科學中。例如,分子的
點群是
O(3)的子群。因為
浮點版本的正交矩陣有有利的性質,它們是字
數值線性代數中很多算法比如
QR分解的關鍵,通過適當的規範化,
離散餘弦變換(用於MP3壓縮)可用正交矩陣表示 。
分析算法
利益
數值分析自然的利用了正交矩陣的很多數值
線性代數的性質。例如,經常需要計算空間的正交基,或基的正交變更;二者都採用了正交矩陣的形式。有行列式±1和所有模為1的特徵值是對數值穩定性非常有利的。一個蘊涵是
條件數為1(這是極小的),所以在乘以正交矩陣的時候錯誤不放大。很多算法為此使用正交矩陣如Householder反射和Givens旋轉。有幫助的不只是正交矩陣是可逆的,還有它的逆矩陣本質上是免花費的,只需要對換索引(下標)。
置換是很多算法成功的根本,包括有局部定支點(partialpivoting)的運算繁重的
高斯消去法(這裡的置換用來定支點)。但是它們很少明顯作為矩陣出現;它們的特殊形式允許更有限的表示,比如
n個索引的列表。
同樣的,使用Householder和Givens矩陣的算法典型的使用特殊方法的
乘法和存儲。例如,Givens旋轉只影響它所乘的矩陣的兩行,替代完全的
n次的
矩陣乘法為更有效的
n次運算。在使用這些反射和旋轉向矩陣介入零的時候,騰出的空間足夠存儲充足的數據來重生成這個變換。
分解
一些重要的
矩陣分解(Golub&VanLoan,1996)涉及到了正交矩陣,包括:
(2)
奇異值分解M=
UΣV,
U和
V正交,
Σ非負對角。