高等數學(基礎學科名稱)

高等數學(基礎學科名稱)

本詞條是多義詞,共58個義項
更多義項 ▼ 收起列表 ▲

高等數學是指相對於初等數學和中等數學而言,數學的對象及方法較為繁雜的一部分,中學的代數幾何以及簡單的集合論初步、邏輯初步稱為中等數學,將其作為中國小階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:數列極限微積分空間解析幾何線性代數級數常微分方程工科理科財經類研究生考試的基礎科目。

基本介紹

  • 中文名:高等數學
  • 外文名:Advanced/ Additional / Higher Mathematics
  • 主要內容:極限、微積分等
  • 套用領域:電氣工程、建築業、財經等
課程特點,歷史發展,

課程特點

通常認為,高等數學是由17世紀後微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。相對於初等數學和中等數學而言,學的數學較難,屬於大學教程,因此常稱“高等數學”,在課本常稱“微積分”,理工科的不同專業。文史科各類專業的學生,學的數學稍微淺一些,文史科的不同專業,深淺程度又各不相同。研究變數的是高等數學,可高等數學並不只研究變數。至於與“高等數學”相伴的課程通常有:線性代數(數學專業學高等代數),機率論數理統計(有些數學專業分開學)。
三角函式三角函式
初等數學研究的是常量與勻變數,高等數學研究的是非勻變數。高等數學(它是幾門課程的總稱)是理、工科院校一門抹束企重要的基礎學科,也是非數學專業理工科專業學生的必修數學課,也是其它某些專業的必修課。
作為一門基礎科學,高等數學有其固有的特點,這就是高度的抽象性、嚴密的邏輯性和廣泛的套用性。抽象性和計算性是數學最基本、最顯著的特點,有了高度抽象和統一,我們才能深入地揭示其本質規律,才能使之得到更廣泛的套用。嚴密的邏輯性是指在數學理論的歸納和整理中,無論是概念和表述,還是判斷和推理,都要運用邏輯的規則,遵循思維的規律。所以說,數學也是一種思想方法,學習數學的過程就是思維訓練的過程。人類社會的進步,與數學這門科學的廣泛套用是分不開的。尤其是到了現代,電子計和腳算機的出現和普及使得數學的套用領域更加拓寬,現代數學正成為科技發展的強大動力,同時也廣泛和深入地滲透到了社會科學領域。
變數與函式的研究變數與函式的研究

歷史發展

一般認為,16世紀以前發展起來的各個數學總的是屬於初等數學的範疇,17世紀以後建立起了更為深入的微積分空間解析幾何線性代數級數常微分方程等數學學科,因此稱為高等數學。
1691年,法國數學家米歇爾·羅爾提出羅爾定理,對代數學的發展起了重要作用,是微分學中的幾個中值定理之一,是導數套用的理論基礎。另一名法國數學家拉格朗建立微分學中的幾個中值定理之一,彌補了羅爾定理中的不足條件,並建立拉格朗日乘法。法國數學家洛必達在1696年建立洛必達法則,並發表了著作《闡明曲線的無窮小於分析》,它是嫌永凶微積分學方面最早的教科書,洛必達法則是對柯西中值定理結合未定式極限推出的一種求導方法,實現了簡便實用的數學原則。
德國數學家萊布尼茨和英國科學家牛頓先後獨立建立了微積分,牛頓建立了圍繞萬有引力定律的相關數學公式,萊布尼茨在級數收斂性質中提出了萊布尼茨判別法。瑞士科學家伯努利1738年的著作《流體動力學》提出了“流速增加、壓譽她船茅強降低”的伯努利原理,寫出了流體力學的方程,稱之為伯努利方程。
19世紀以前確立的幾何、代數、分析三大數學分支中,前兩個都原是初等數學的分支,其後又發展了屬於高等數學的部分,而只有分析從一開始就屬於高等數學。分析的基礎——微積分被認為是“變數的數學”的開始,因此,研究變數是高等數學的兵晚台組特徵之一。原始的變數概念是物質世界變化的諸量的直接抽象,現代數學中變數的概念包含了更高層次的抽象。如數學分析中研究的限於實變數,而其他數學分支所研究的還有取複數值的復變數和向量張量形式的,烏備兆以及各種幾何量代數量,還有取值具有偶然性的隨機變數、模糊變數和變化的(機率)空間——範疇和隨機過程。描述變數間依賴關係的概念由函式發展到泛函變換以至於函子。與初等數學一樣,高等數學也研究空間形式,只不過它具有更高層次的抽象性,並反映變化的特徵,或者說是在變化中研究它。例如,曲線、曲面的概念已發展成一般的流形。按照埃爾朗根綱領,幾何是關於圖形在某種變換群下不變性質的理論,這也就斷嬸循是說,幾何是將各種空間形式置於變換之下來來研究的。
無窮進入數學,這是高等數學的又一特徵。現實世界的各種事物都以有限的形式出現,無窮是對他們的共同本質的一種概括。所以,無窮進入數學是數學高度理論化、抽象化的反映。數學中的無窮以潛無窮實無窮兩種形式出現。在極限過程中,變數的變化是無止境的,屬於潛無窮的形式。而極限值的存在又反映了實無窮過程。最基本的極限過程是數列和函式的極限。數學分析以它為基礎,建立了刻畫函式局部和總體特徵的各種概念和有關理論,初步成功地描述了現實世界中的非均勻變化和運動。另外一些形式上更為抽象的極限過程,在別的數學學科中也都起著基本的作用。還有許多學科的研究對象本身就是無窮多的個體,也就說是無窮集合,例如之類及各種抽象空間。這是數學中的實無窮。能夠處理這類無窮集合,是數學水平與能力提高的表現。為了處理這類無窮集合,數學中引進了各種結構,如代數結構序結構拓撲結構。另外還有一種度量結構,如抽象空間中的範數、距離和測度等,它使得個體之間的關係定量化、數位化,成為數學的定性描述和定量計算兩方面的橋樑。上述結構使得這些無窮集合具有豐富的內涵,能夠彼此區分,並由此形成了眾多的數學學科。
寫滿公式的紙寫滿公式的紙
數學的計算性方面。在初等數學中甚至占了主導的地位。它在高等數學中的地位也是明顯的,高等數學除了有很多理論性很強的學科之外,也有一大批計算性很強的學科,如微分方程、計算數學、統計學等。在高度抽象的理論裝備下,這些學科才有可能處理現代科學技術中的複雜計算問題。
無窮進入數學,這是高等數學的又一特徵。現實世界的各種事物都以有限的形式出現,無窮是對他們的共同本質的一種概括。所以,無窮進入數學是數學高度理論化、抽象化的反映。數學中的無窮以潛無窮實無窮兩種形式出現。在極限過程中,變數的變化是無止境的,屬於潛無窮的形式。而極限值的存在又反映了實無窮過程。最基本的極限過程是數列和函式的極限。數學分析以它為基礎,建立了刻畫函式局部和總體特徵的各種概念和有關理論,初步成功地描述了現實世界中的非均勻變化和運動。另外一些形式上更為抽象的極限過程,在別的數學學科中也都起著基本的作用。還有許多學科的研究對象本身就是無窮多的個體,也就說是無窮集合,例如之類及各種抽象空間。這是數學中的實無窮。能夠處理這類無窮集合,是數學水平與能力提高的表現。為了處理這類無窮集合,數學中引進了各種結構,如代數結構序結構拓撲結構。另外還有一種度量結構,如抽象空間中的範數、距離和測度等,它使得個體之間的關係定量化、數位化,成為數學的定性描述和定量計算兩方面的橋樑。上述結構使得這些無窮集合具有豐富的內涵,能夠彼此區分,並由此形成了眾多的數學學科。
寫滿公式的紙寫滿公式的紙
數學的計算性方面。在初等數學中甚至占了主導的地位。它在高等數學中的地位也是明顯的,高等數學除了有很多理論性很強的學科之外,也有一大批計算性很強的學科,如微分方程、計算數學、統計學等。在高度抽象的理論裝備下,這些學科才有可能處理現代科學技術中的複雜計算問題。

相關詞條

熱門詞條

聯絡我們