《同調代數》是1988年科學出版社出版的圖書,作者是周伯塤。
基本介紹
- 中文名:同調代數
- 作者:周伯塤
- 出版社:科學出版社
- 出版時間:1988年2月
- ISBN:7030006283
圖書簡介
圖書目錄
- 目錄
- 第一章 範疇
- 第二章 模
- 第三章 同調
- 第四章 同調維數與某些環
- 第五章 譜序列與Künneth定理
- 附錄一 正則局部環
- 附錄二 Serre問題
- 參考文獻
- 索引
《同調代數》是1988年科學出版社出版的圖書,作者是周伯塤。
同調代數是隨著拓撲學,特別是同調論的發展而形成的一種代數方法。它把代數學中以往作個別研究的一些問題,用統一的觀點給予強有力的展開,而形成作為一般體系的領域。這個方法是建立在範疇與函子的觀點之上的,它以不僅處理對象的內部結...
同調代數為環、群、李代數等代數結構的研究提供了有力的工具,在代數幾何與代數拓撲等學科中也有重要套用。它研究的主要對象是模,但主要結果都可推廣到更廣的範疇。任一環R上的左(右)R模M都有投射分解式中一切Pj都是投射左R模,...
《同調代數》是由世界圖書出版公司在2011年出版的圖書,作者是法國的嘉當。目錄 preface chapter i. rings and modules 1. preliminaries 2. projective modules 3. injective modules 4. semi-simple rings 5. hereditary ...
《同調代數》是1988年科學出版社出版的 圖書,作者是周伯塤。圖書簡介 本書闡述同調代數的基本理論與方法,包括範疇、模、同調、同調函式與一些環、譜序列等5章。圖書目錄 目錄 第一章 範疇 第二章 模 第三章 同調 第四章 同調維數...
《同調代數引論》是2011年2月大連理工大學出版社出版的圖書,作者是南基洙、王穎。內容簡介 《同調代數導論》主要介紹證明Serre猜想的一些思想方法;第5章,群的擴張,初步介紹研究群結構的同調方法;第6章,同調論,主要介紹一般的同調概念...
《同調代數導論(第2版)》是2015年7月1日世界圖書出版公司出版的著作,作者是Joseph、J.Rotman 。內容簡介 《同調代數導論(第2版 英文版)》既有大量例題,又有許多代數套用。《同調代數導論(第2版 英文版)》內容清晰、易於遵循...
《同調代數教程》是2003年出版的圖書,作者是P. J. Hilton、U. Stammbach。內容簡介 We have inserted, in this edition, an extra chapter (Chapter X) entitled "Some Applications and Recent Developments." The first section of...
同調代數導論 同調代數是由世界圖書出版公司出版的圖書,作者是J.J.羅特曼。
《基本同調代數》是2003年6月1日由世界圖書出版公司出版的書籍。本書用英文介紹了基本同調代數的概念、作用、定理、運算方法、適用範圍等內容。內容簡介 《基本周調代數(英文版)》內容簡介:Fiveyearsago,Itaughtaone-quartercoursein...
《交換代數與同調代數(第二版)》是2017年科學出版社出版的圖書,作者是李克正。內容簡介 交換代數與同調代數是代數學中的重要領域,也是代數幾何、代數數論等領域的強大工具,因此是很多不同方向的研究生和研究人員所需要甚至必備的。本...
群的上同調是同調代數的一個概念。簡介 群的上同調為霍赫希爾德上同調群的特例。定義 設G為群,M為左G模。則群G的係數取值於M的第n上同調群定義為 其中 為平凡G模。等價定義為 計算G的上同調的標準復形為 其中Cⁿ(G,M)={...
《相對同調代數及其套用》是依託南京大學,由丁南慶擔任項目負責人的面上項目。項目摘要 本課題旨在通過相對同調代數的研究,發現新的包絡類與覆蓋類,並利用它們得到一些重要環類的結構與性質,構造不同於傳統意義下的同調函子,發現計算...
本項目為同調代數、代數K-理論、(非交換)代數幾何、代數表示理論的交叉領域。將建立微分分次代數的Hattori-Stallings跡映射理論,並由此證明Extension conjecture對於有限維初等代數成立;將證明有限Hochschild同調維數為開性質,給出判斷代數的...
《代數的Hochschild上同調代數及導出中心》是依託中國科學技術大學,由葉郁擔任項目負責人的面上項目。中文摘要 本項目旨在研究代數的Hochschild上同調代數與其導出範疇中心之間的聯繫。從具體的例子出發,計算遺傳代數、傾斜代數、循環圈的截面...
《國外數學名著系列37:同調代數方法》是2009年1月科學出版社出版的圖書。內容簡介 《國外數學名著系列(續1)(影印版)37:同調代數方法(第2版)》主要內容:Homological algebra first arose as a language for describing topological ...
《交換代數與同調代數》是1998年科學出版社出版的圖書,作者是李克正。 圖書目錄 目錄 Ⅰ.環與模 Ⅱ.整性 Ⅲ.諾特環與阿廷環 Ⅳ.諾特環與整性 Ⅴ.準素分解 Ⅵ.張量積 Ⅶ.平坦性 Ⅷ.代數集 Ⅸ.分次環與形式完備化 Ⅹ....
霍赫希爾德上同調群是同調代數中的一種上同調群。定義 代數定義 設A為 上代數,M為A上雙模。定義 C⁰(A,M)=M,為A的取值於 M的n+1線性泛函。則C*(A,M)= 為A的取值於M的霍赫希爾德上鏈復形。其中微分運算元δ定義為 (δ...
20世紀60年代亞當斯充分利用了同調代數、上同調運算理論,廣義同調論等代數拓撲法,解決了許多問題,例如他指出除了n=2,4,8之外,n維歐氏空間不具備賦范代數結構。70年代以後,代數拓撲法仍然有多方面的進展,在廣義同調論,變換群作用...
數學中,霍赫希爾德同調(Hochschild homology)是環上結合代數的同調論。對某些函子也有一個霍赫希爾德同調。這是以德國數學家格哈德·霍赫希爾德(Gerhard Hochschild)提出的。代數的定義 設k是一個環,A是一個k上結合代數,M是一個A上...
Gorenstein 模與Gorenstein 同調維數是Gorenstein 同調代數的主要研究對象,而Banach代數是泛函分析中的重要研究方向。Liddell等人用同調的方法去研究Banach 代數的結構與性質,從而把經典的同調代數與Banach 代數結合起來。本項目旨在把Gorenstein...
本項目為非交換代數、非交換幾何、同調代數、符號計算的交叉領域。將採用譜序列、超復形塔、同調干擾、非交換Groebner基等方法,給出代數的Hochschild同調的一般表達式及一般算法,填補代數的Hochschild同調的通用計算方法的理論空白;通過完善...
代數K理論主要研究環範疇到與作用,其中最基本的是K₀與 ,代數K理論與幾何拓撲、拓撲K理論、代數幾何、典型群、代數數論等學科都有著 密切的聯繫。在一定的意義上來說,它又是線性代數中空間的維數、行列式以及同調代數的更高層次的...
《關於Hopf代數的上同調的計算》是依託南開大學,由鄭棄冰擔任項目負責人的青年科學基金項目。中文摘要 霍普代數的上同調的計算是同調代數的中心問題之一,它對於代數拓撲中的同倫群的計算及理論物理中的量子群的性質等等都具有重大的意義。...
正是在代數數論和代數幾何的發展和需要的刺激下,交換代數作為它們共同的代數基礎逐漸形成一門獨立學科。到了本世紀五十年代,同調代數的出現把對於環的研究又推到一個新的階段。在那以後,交換代數具有許多新的特點。例如:模論起著愈來...
擬同構是同調代數中的一個概念。鏈復形間的態射 被稱為擬同構,如果它所誘導的所有同調群間的同態 都是同構。上鏈復形間的態射 被稱為擬同構,如果它所誘導的所有上同調群間的同態 都是同構。擬同構給出導出範疇中的同構。...
在同調代數中,譜序列是一種借著逐步逼近以計算同調或上同調群的技術,由讓·勒雷在1946年首創。其套用見諸代數拓撲、群上同調與同倫理論。動機 讓·勒雷當初為了研究代數拓撲學,而引入層的概念,從而面臨計算層上同調的問題。為此,...
同倫性是等價關係,不僅在代數拓撲中,在同調代數中也是非常重要的概念。鏈同倫就是同調代數中來自拓撲學的一個重要概念,是從一個給定的鏈復形的所有鏈映射之間的一種等價關係。若h微由f到g的一個鏈同倫,這時稱f與g是同倫的。簡...
二元函子(bifunctor)是範疇論以及同調代數、代數幾何等學科中常用的函子。若C₁,C₂,C為三個範疇,則從C₁,C₂的積範疇C₁∏C₂到C的函子稱為二元函子,同調代數中最重要的Hom函子等都是二元函子。定義 給定積...
周伯壎,男,祖籍湖南。數學家。長期從事數論、代數方面的教學與研究。在史尼雷爾曼密率理論、循環群與環論研究方面頗有建樹。是在我國開展同調代數與代數K理論研究的倡導者之一。人物經歷 周伯壎,1920年元月出生於安徽蕪湖市,祖籍湖南省...
反變Hom函子是範疇論中的一種函子。簡介 反變Hom函子(contravariant func-for Hom in category theory)亦稱反變態射函子或第二表示函子,是範疇論中的重要函子之一,也是同調代數中最基本的函子之一。模範疇定義 對左R模B,可定義...