基本介紹
概念,性質,定義擴展,實例分析,特點,全純函式,
概念
半純函式在定義域中的某些點上沒有定義,除這些點外全純,我們稱這些點為極點。 函式在這些極點附近的冪級數展開可寫為(以單變數為例)羅朗展開式:f(z)=cm/(z-a)m+...+c2/(z-a)2+c1/(z-a)+ c0+a1(z-a)+a2(z-a)2+......, 這裡ci和aj都是常係數, z=a是極點。
性質
每個D上的亞純函式可以表達為兩個全純函式的比(其分母不恆為0):極點也就是分母的零點。
直觀的講,一個亞純函式是兩個性質很好的(全純)函式的比。這樣的函式本身性質也很“好”,除了分式的分母為零的點,那時函式的值為無窮。
定義擴展
在數學中,黎曼曲面是德國數學家黎曼為了給多值解析函式構想一個單值的定義域而提出的一種曲面。用現代的語言說,黎曼曲面就是連通的一維複流形。黎曼曲面的研究不僅是單複變函數論的基本問題之一,而且與眾多的現代數學分支有緊密聯 系,如多複變函數論、複流形、代數幾何、代數數論、 自守函式等。
數學上,特別是在複分析中,一個黎曼曲面是一個一維複流形。黎曼曲面可以被認為是一個複平面的變形版本:在每一點局部看來,他們就像一片複平面,但整體的拓撲可能極為不同。例如,他們可以看起來像球或是環,或者兩個頁面粘在一起。
每個黎曼曲面都是二維實解析流形(也就是曲面),但它有更多的結構(特別是一個復結構),因為多值函式的無歧義的定義需要用到這些結構。一個實二維流形可以變成為一個黎曼曲面(通常有幾種不同的方式)若且唯若它是可定向的。所以球和環有復結構,但是莫比烏斯圈,克萊因瓶和投影平面沒有。
當D為整個黎曼球時,亞純函式域就是複平面上的單變數有理函式域,因為可以證明任意黎曼球上的亞純函式都是有理函式(這是所謂的GAGA原理的一個特例)。
實例分析
比如有理函式就是在擴充複平面上的亞純函式,它是兩個多項式的商而Q(z)的零點是R(z)的極點,即R(z)有有限多個極點,∞點是R(z)的極點或可去奇點。複平面上不是有理函式的亞純函式稱為超越亞純函式。
例如ctg( z)就是超越亞純函式,它以kπ為全部極點,超越亞純函式一定有無限多個極點。有理函式可以分為部分分式,即其中{ak}是R( z )的全部極點 ,Pk( u )是多項式 , 當∞點是m階極點時,P0(z)是m階多項式。
函式f(z)=ln z不是在整個複平面上的亞純函式,因為它只在複平面上的一個孤立點集上有定義。
特點
由於亞純函式的極點是孤立點,它們至多有可數多個。極點的個數可以有無窮多個,例如函式:
複平面上的超越亞純函式也有一個部分分式分解定理 , f(z)是以{ak}為極點集的超越亞純函式,設f(z)在極點ak處羅朗展式的主部為,Pk(u)是一個多項式,於是f(z)可表作:中g(z)是整函式,hk(z)是適當選取的多項式。 對於超越亞純函式有一個類似畢卡定理的結果 :f(z)是超越亞純函式,則最多除去兩個例外值外 ,對所有其他值W, f(z)-W一定有無窮多個零點。
全純函式
全純函式即解析函式。解析函式是能局部展成冪級數的函式,它是複變函數論研究的主要對象。解析函式類包括了數學及其在自然科學和技術套用中所遇到的大多數函式,這類函式關於算術、代數和分析的各種基本運算是封閉的,解析函式在其自然存在的域中代表唯一的一個函式,因此,對解析函式的研究具有特殊的重要性。
對解析函式的系統研究開始於18世紀。歐拉在這方面做出許多貢獻。拉格朗日最早希望建立系統的解析函式理論,他曾試圖利用冪級數的工具來發展這種理論,但未獲成功。
法國數學家柯西以他自己的工作被公認為是解析函式理論的奠基者。1814年他定義正則函式為導數存在且連續,他批判了過去許多錯誤的結果,創立了若干法則,以保證級數運算的可靠性。1825年他得到了著名的柯西積分定理,隨後又建立了柯西積分公式。柯西利用這些工具得到了正則函式在它的定義域內處處可表為收斂的冪級數的結果,其逆命題亦真。所以解析和正則是等價的。後來黎曼對柯西的工作做出了重要的發展。1900年,法國數學家古爾薩改善了正則函式的定義,只要求函式在定義域中處處有導數。
外爾斯特拉斯以冪級數為出發點開展對解析函式的研究。他定義正則函式為可以展開為冪級數的函式,創立了解析開拓理論,並利用解析開拓定義完全解析函式。柯西的方法限於研究完全解析函式的所謂單值分支,必須通過解析開拓才能和外爾斯特拉斯的理論統一起來。