混合有限元方法和套用

混合有限元方法和套用

《混合有限元方法和套用》是2016年世界圖書出版公司出版的著作,作者是Daniele,Boffi。

基本介紹

  • 中文名:《混合有限元方法和套用》
  • 作者:Daniele,Boffi
  • 出版社:世界圖書出版公司
  • 出版時間:2016年07月01日
  • ISBN:9787519205355 
內容簡介,目錄,

內容簡介

非標準有限元法,尤其是混合元法,是套用的核心。在《混合有限元方法和套用(英文版)》中,作者給出了開始於有限維的表示法,然後到希伯特空間方程,最後考慮逼近法,其中包括穩定方法和本徵值問題。該書還介紹了標準有限元逼近法,隨後介紹了H(div)和H(curl)混合方程逼近的構成要素。
該通用理論被用在如下經典例子中:Dirichlet問題、Stokes問題、平板問題、彈性力學和電磁學。

目錄

1 Variational Formulations and Finite Element Methods
1.1 Classical Methods
1.2 Model Problems and Elementary Properties of SomeFunctional Spaces
1.2.1 Eigenvalue Problems
1.3 Duality Methods
1.3.1 Generalities
1.3.2 Examples for Symmetric Problems
1.3.3 Duality Methods for Non Symmetric Bilinear Forms
1.3.4 Mixed Eigenvalue Problems
1.4 Domain Decomposition Methods, Hybrid Methods
1.5 Modified Variational Formulations
1.5.1 Augmented Formulations
1.5.2 Perturbed Formulations
1.6 Bibliographical Remarks
2 Function Spaces and Finite Element Approximations
2.1 Properties of the Spaces Hm(Ω), H(div;Ω), and H(curl;Ω)
2.1.1 Basic Properties
2.1.2 Properties Relative to a Partition ofΩ
2.1.3 Properties Relative to a Change of Variables
2.1.4 De Rham Diagram
2.2 Finite Element Approximations of HI (Ω) and H2(Ω)
2.2.1 Conforming Methods
2.2.2 Explicit Basis Functions on Triangles and Tetrahedra
2.2.3 Nonconforming Methods
2.2.4 Quadrilateral Finite Elements on Non Affine Meshes
2.2.5 Quadrilateral Approximation of Scalar Functions
2.2.6 Non Polynomial Approximations
2.2.7 Scaling Arguments
2.3 Simplicial Approximations of H(div;Ω) and H(curl;Ω)
2.3.1 Simplicial Approximations of H(div;Ω)
2.3.2 Simplicial Approximation of H(curlΩ)
2.4 Approximations of H(div; K) on Rectangles and Cubes
2.4.1 Raviart-Thomas Elements on Rectangles and Cubes
2.4.2 Other Approximations of H(div; K) on Rectangles
2.4.3 Other Approximations of H(div; K) on cubes
2.4.4 Approximations of H(curl; K) on Cubes
2.5 Interpolation Operator and Error Estimates
2.5.1 Approximations of H(div; K)
2.5.2 Approximation Spaces for H(div;Ω)
2.5.3 Approximations of H(curl;Ω)
2.5.4 Approximation Spaces for H(curl;Ω)
2.5.5 Quadrilateral and Hexahedral Approximation of Vector-Valued Functions in H(div;Ω)and H(curl;Ω)
2.5.6 Discrete Exact Sequences
2.6 Explicit Basis Functions for H(div; K) and H(curl; K) on Triangles and Tetrahedra
2.6.1 Basis Functions for H(div; K):The Two-Dimensional Case
2.6.2 Basis Functions for H(div; K):The Three-Dimensional Case
2.6.3 Basis Functions for H(curl; K):The Two-Dimensional Case
2.6.4 Basis Functions for H(curl; K):The Three-Dimensional Case
2.7 Concluding Remarks
3 Algebraic Aspects of Saddle Point Problems
3.1 Notation, and Basic Results in Linear Algebra
3.1.1 Basic Definitions
3.1.2 Subspaces
3.1.3 Orthogonal Subspaces
3.1.4 Orthogonal Projections
3.1.5 Basic Results
3.1.6 Restrictions of Operators
3.2 Existence and Uniqueness of Solutions:The Solvability Problem
3.2.1 A Preliminary Discussion
3.2.2 The Necessary and Sufficient Condition
3.2.3 Sufficient Conditions
3.2.4 Examples
3.2.5 Composite Matrices
4 Saddle Point Problems in Hilbert Spaces
5 Approximation of Saddle Point Problems
6 Complements: Stabilisation Methods, Eigenvalue Problems
7 Mixed Methods for Elliptic Problems
8 Incompressible Materials and Flow Problems
9 Complements on Elasticity Problems
10 Complements on Plate Problems
11 Mixed Finite Elements for Electromagnetic Problems
References
Index

相關詞條

熱門詞條

聯絡我們