方程的解

方程兩邊左右相等的未知數的值叫做方程的解。方程的解不唯一,解方程時,注意絕對值

基本介紹

  • 中文名:方程的解
  • 類別:數學名詞
  • 特點:整式
  • 運用範圍:廣泛
數學術語,方程解法,其他解法,

數學術語

使得方程中等號兩邊相等的未知數的值叫做方程的解;
也可以說是方程中未知數的值叫做方程的解。
只含有一個未知數的方程的解叫方程的根。
x=2 是方程2x-4=0的解,也是該方程的根。

方程解法

一元三次方程的求根公式用通常的演繹思維是作不出來的,用類似解一元二次方程的求根公式的配方法只能將型如ax^3+bx^2+cx+d+0的標準型一元三次方程形式化為x^3+px+q=0的特殊型。
方程的解方程的解
一元三次方程的求解公式的解法只能用歸納思維得到,即根據一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式歸納出一元三次方程的求根公式的形式。歸納出來的形如 x^3+px+q=0的一元三次方程的求根公式的形式應該為x=A^(1/3)+B^(1/3)型,即為兩個開立方之和。歸納出了一元三次方程求根公式的形式,下一步的工作就是求出開立方裡面的內容,也就是用p和q表示A和B。方法如下:
⑴將x=A^(1/3)+B^(1/3)兩邊同時立方可以得到
⑵x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
⑶由於x=A^(1/3)+B^(1/3),所以⑵可化為
x^3=(A+B)+3(AB)^(1/3)x,移項可得
⑷x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比較,可知
⑸-3(AB)^(1/3)=p,-(A+B)=q,化簡
⑹A+B=-q,AB=-(p/3)^3
⑺這樣其實就將一元三次方程的求根公式化為了一元二次方程的求根公式問題,因為A和B可以看作是一元二次方程的兩個根,而⑹則是關於形如ay^2+by+c=0的一元二次方程兩個根的韋達定理,即
⑻y1+y2=-(b/a),y1*y2=c/a
⑼對比⑹和⑻,可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
⑽由於型為ay^2+by+c=0的一元二次方程求根公式為
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化為
⑾y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
將⑼中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入⑾可得
⑿A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
⒀將A,B代入x=A^(1/3)+B^(1/3)得
⒁x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
式 ⒁只是一元三方程的一個實根解,按韋達定理一元三次方程應該有三個根,不過按韋達定理一元三次方程只要求出了其中一個根,另兩個根就容易求出了。
x^y就是x的y次方

其他解法

一元三次方程的一般形式是
x3+sx2+tx+u=0
如果作一個橫坐標平移y=x+s/3,那么我們就可以把方程的二次項消
去。所以我們只要考慮形如
x3=px+q
假設方程的解x可以寫成x=a-b的形式,這裡a和b是待定的參數。
代入方程,我們就有
a3-3a2b+3ab2-b3=p(a-b)+q
整理得到
a3-b3 =(a-b)(p+3ab)+q
二次方程理論可知,一定可以適當選取a和b,使得在x=a-b的同時,
3ab+p=0。這樣上式就成為
a3-b3=q
兩邊各乘以27a3,就得到
27a6-27a3b3=27qa3
由p=-3ab可知
27a6 + p3 = 27qa3
這是一個關於a3的二次方程,所以可以解得a。進而可解出b和根x。
三次方程中的做法一樣,可以用一個坐標平移來消去四次方程
一般形式中的三次項。所以只要考慮下面形式的一元四次方程:
100y=3d+5s+9g關鍵在於要利用參數把等式的兩邊配成完全平方形式。考慮一個參數
a,我們有
(x2+a)2 = (p+2a)x2+qx+r+a2
等式右邊是完全平方式若且唯若它的判別式為0,即
q2 = 4(p+2a)(r+a2)
這是一個關於a的三次方程,利用上面一元三次方程的解法,我們可以
解出參數a。這樣原方程兩邊都是完全平方式,開方後就是一個關於x
一元二次方程,於是就可以解出原方程的根x。
最後,對於5次及以上的一元高次方程沒有通用的代數解法(即通過各項係數經過有限次四則運算乘方和開方運算),這稱為阿貝耳定理

相關詞條

熱門詞條

聯絡我們