黎曼流形

黎曼流形

黎曼(德,1826-1866年):幾何觀點,黎曼面。1851年博士論文《單複變函數一般理論基礎》,其重要性恰如著名數學家阿爾福斯(芬-美,1907-1996年)所說:這篇論文不僅包含了現代複變函數論主要部分的萌芽,而且開啟了拓撲學的系統研究,革新了代數幾何,並為黎曼自己的微分幾何研究鋪平了道路。此外,建立了柯西-黎曼條件,真正使這方程成為複分析大廈的基石,揭示出複函數與實函式之間的深刻區別,黎曼映射定理

基本介紹

  • 本名:黎曼
  • 民族族群:德
  • 出生時間:1826年
  • 去世時間:1866年
  • 主要作品:《單複變函數一般理論基礎》
  • 主要成就:革新了代數幾何
概念,例子,黎曼空間,流形,聯絡與曲率,Levi-Civita聯絡,曲率,人物簡介——黎曼,

概念

黎曼流形是一黎曼度量的微分流形。設M是n維光滑流形,若在M上給定一個光滑的二階協變張量場g,稱(M,g)為一個n維黎曼流形,g稱為該黎曼流形的基本張量或黎曼度量,如果滿足:
1.g是對稱的,即:
g(X,Y)=g(Y,X) (X,Y∈TpM,p∈M).
2.g是正定的,即:
g(X,X)≥0 (X∈TpM,p∈M),
且等號僅在X=0時成立。
簡單地說,黎曼流形就是給定了一個光滑的對稱、正定的二階張量場的光滑流形。
微分流形以及黎曼幾何中,一個黎曼流形是具有黎曼度量的微分流形,換句話說,這個流形上配備有一個對稱正定的二階協變張量場,亦即在每一點的切空間上配備一個正定二次型。給了度量以後,我們就可以像初等幾何學中一樣,測量長度,面積,體積等量。
黎曼流形

例子

n維歐氏空間中有自然的度量ds^2=(dx_1)^2+...+(dx_n)^2。它的矩陣表示就是單位矩陣。
歐氏空間中的子流形當然也就自然地誘導出一個度量。曲線和曲面的微分幾何里,我們都是把曲線曲面視為三維空間子流形,所以自然賦予了度量結構。

黎曼空間

愛因斯坦廣義相對論告訴我們,引力並不是真正的力,而是反映空間扭曲的一個幾何現象。對一個考察者來說,他身處在這個空間裡,是無法直接體會到空間扭曲的。 但是他可以通過測量自己所處的空間來判斷是否存在空間扭曲,測量的標準就是所謂的度量。 度量是內蘊性質。 具有度量的空間就稱為黎曼空間

流形

流形是一類特殊的連通、豪斯多夫仿緊的拓撲空間,在此空間每一點的鄰近預先建立了坐標系,使得任何兩個(局部)坐標系間的坐標變換都是連續的。n維流形的概念在18世紀法國數學家拉格朗日的力學研究中已有萌芽。19世紀中葉英國數學家凱萊(1843)、德國數學家格拉斯曼(1844,1861)、瑞士數學家施勒夫利(1852)分別論述了n維歐幾里得空間理論,把它視為n個實變數的連續統。1854年德國數學家黎曼在研究微分幾何時用歸納構造法給出一般n維流形的概念:n維流形是把無限多個(n-1)維流形按照一維流形方式放在一起而形成的,從此開始流形的拓撲結構及其局部理論的研究。法國數學家龐加萊在19世紀末把n維流形定義為一種連通的拓撲空間,其中每一點都具有和n維歐氏空間同胚的鄰域(被稱為龐加萊流形),從而開闢了組合拓撲學的道路。
對流形的深入研究集中在流形上的微分結構與組合結構的存在性、唯一性問題,微分結構與組合結構的關係,流形的各種意義下的分類等問題,20世紀50—60年代做出許多重要結果,近幾十年來出現有限維帶邊流形和無限維流形概念。流形理論在與其他拓撲理論的相互結合發展中也提出許多問題,其研究仍在繼續。

聯絡與曲率

Levi-Civita聯絡

流形上的黎曼度量給定後,我們可以得到一個唯一確定的對稱(即無撓)聯絡,並且它保持黎曼度量。這個聯絡稱為這個黎曼度量的Levi-Civita聯絡。
有了聯絡,我們就可以定義向量場協變微分協變導數,從而建立起流形上的微分學。歐氏空間的聯絡就是通常意義上的向量函式的微分

曲率

黎曼度量還誘導出曲率的概念,它反映了流形的彎曲程度。曲率處處為零的流形稱為平坦黎曼流形。歐氏空間就是最常見的平坦流形。
德國數學家高斯最早研究了曲面上的曲率,發現這種曲率是內蘊的,儘管它的定義式不是內蘊的。

人物簡介——黎曼

德國數學家。生於德國漢諾瓦 (Hannover) 的布雷塞倫茨(Breselenz),是牧師之子,在哥廷根 (Gottingen) 大學和梅林大學學習,1851年在哥廷根大學獲得博士學位,1854年任該大學兼職講師,1857年任副教授,1859年作為P. G. L. Dirichlet的繼承人任教授。因患肺病,英年早逝。短短一生中,在數學各個領域作出了劃時代的貢獻。最重要的貢獻有四個方面:幾何學、複變函數論、微分方程和數學分析的基本理論。他是黎曼幾何的創始人,複變函數理論創始人之一。在數學分析方面,他給積分下的標準定義,一直沿用至今,以至於這種意義下的古典積分叫作“黎曼積分”。他還對傅立葉級數理論做了許多研究,其中最著名的就是以他的名字命名的定理。黎曼對偏微分方程和常微分方程理論,特別是常微分方程的奇點理論,也都創造了一些重要的方法。黎曼還十分關注自然科學,特別是物理學。他的複變函數和微分方程研究都直接與流體力學和電磁理論相聯繫,著名的數學家克萊因曾在《19世紀數學發展講義》一書中指出: “黎曼用他的數學才能為自然科學本身開闢新的途徑。然後又把自然科學作為形成數學中的新概念的動力”。

相關詞條

熱門詞條

聯絡我們