形偽黎曼流形是光滑流形擁有光滑對稱(0,2) 張量。它在流形每點都非退化。這個張量稱為偽黎曼度量或偽度量張量。
黎曼流形與偽黎曼流形的最大分別是偽黎曼流形不一定正定,通常是非退化。因為每個正定形式都是非退化的,黎曼度量是偽黎曼度量的一個特殊例子。固此,可以把黎曼流形歸納為偽黎曼流形。
每一個非退化對稱,雙線性形式有一個固定的度量符號 (p,q)。這裡 與 記作正特徵值及負特徵值的個數。注意 p + q = n 是流形的維數。黎曼流形就是以 (n,0) 作為符號。
偽黎曼流形的符號 (p,1) 稱為洛倫茲度量。 擁有洛倫茲度量的流形都是洛倫茲流形。除黎曼流形外,洛倫茲流形是偽黎曼流形的最重要的子類。因為它常被用於廣義相對論。廣義相對論首要假設是時空可以轉為擁有 (3,1) 符號的洛倫茲流形的模型。
和歐幾里得空間 可以被認為是黎曼流形的模型一樣,, 有平坦閔可夫斯基度量的閔可夫斯基空間(Minkowski space) 是洛倫茲流形的模型空間。特徵數為(p,q)的偽黎曼流形的模型空間是有如下偽度量的:
有些黎曼度量的基本定理可以推廣到偽黎曼的情形。例如黎曼幾何基本定理對偽黎曼流形也成立。這使得我們能夠在偽黎曼流形上能夠使用列維-奇維塔聯絡和相關的曲率張量。另一方面,黎曼幾何的很多定理在推廣到偽黎曼的情況下不成立。例如,並不是每個光滑流形都可以有一個給定符號的偽黎曼度量;因為有一些特殊的拓撲阻礙存在。