《非線性方程求解方法和孤子相互作用的探索》是依託寧波大學,由阮航宇擔任項目負責人的面上項目。
基本介紹
- 中文名:非線性方程求解方法和孤子相互作用的探索
- 項目類別:面上項目
- 項目負責人:阮航宇
- 依託單位:寧波大學
科研成果
序號 | 標題 | 類型 | 作者 |
---|---|---|---|
1 | (2+1)-dimensional Davey–Stewartson I description in a 2D lattice model | 期刊論文 | Zhi-fang Li and Hang-yu Ruan| |
2 | 孤子理論在套用中的若干理論問題的研究 | 科研獎勵 | 阮航宇| |
3 | Approximate similarity reduction for singularly perturbed Boussinesq equation via symmetry perturbation and direct method | 期刊論文 | Xiaoyu Jiao, Ruoxia Yao and S. Y. Lou| |
4 | Nonsingular Travelling Complexiton Solutions to a Coupled Korteweg{de Vries Equation | 期刊論文 | YANG Xu-Dong, RUAN Hang-Yu, LOU Sen-Yue| |
5 | Interaction Between Line Soliton and Algebraic Soliton for Asymmetric Nizhnik Novikov Veselov Equation | 期刊論文 | RUAN Hang-Yu and LI Zhi-Fang| |
6 | A Maple Package on Symbolic Computation of Hirota Bilinear Form for Nonlinear Equations | 期刊論文 | YANG Xu-Dong† and RUAN Hang-Yu| |
7 | 非線性系統對稱性極其相關研究 | 科研獎勵 | 阮航宇| |
8 | Approximate Symmetry Reduction to the Perturbed One-Dimensional Nonlinear Schr¨odinger Equation | 期刊論文 | JIA Man, WANG Jian-Yong, LOU Sen-Yue| |
9 | The extended symmetry approach for studying general Korteweg-de Vries -type equation | 期刊論文 | Zhi-fang Li(李志芳) and Hang-yu Ruan(阮航宇)| |
10 | Exact Solutions to Nonlinear Schr¨odinger Equation and Higher-Order Nonlinear Schr¨odinger Equation | 期刊論文 | REN Ji and RUAN Hang-Yu| |
11 | B¨acklund Transformations, SolitaryWaves, Conoid Waves and BesselWaves of the (2 + 1)-Dimensional Euler equation | 期刊論文 | SenYue Lou ,Man Jia,Fei Huang and XiaoYan Tang| |
12 | Some discussions about the variable separating method for solving nonlinear models | 期刊論文 | Ruan Hang-yu| |
13 | A Maple Package on Symbolic Computation of Conserved Densities for (1+1)-Dimensional Nonlinear Evolution Systems | 期刊論文 | YANG Xu-Dong, RUAN Hang-Yu and LOU Sen-Yue| |
14 | On Exact Solutions of a Coupled Korteweg – de Vries System | 期刊論文 | Xu-dong Yang, Hang-yu Ruan and Sen Yue Lou| |
15 | 非線性現象的分離變數法研究 | 科研獎勵 | 阮航宇| |
16 | An Extension of Algorithm on Symbolic Computations of Conserved Densities for High-Dimensional Nonlinear Systems | 期刊論文 | YANG Xu-Dong,RUAN Hang-Yu, and LOU Sen-Yue| |