相對同倫

同倫群(homotopy groups)是基本群的高維推廣。基本群是從單位閉區間I到拓撲空間X的閉路的同倫等價類和其運算得到的。相對同倫(relative homotopy)是同倫群的推廣。

基本介紹

  • 中文名:相對同倫
  • 外文名:relative homotopy
  • 領域:數學
  • 性質:同倫群的推廣
  • 相對概念:絕對同倫
  • 對象:空間偶
概念,同倫,同倫群,

概念

相對同倫是同倫群的推廣。若(X,A,x0)是有基點的空間偶,定義:
P(X;x0,A)=(X,A,x0)
是X中以x0為始點,終點在A中的所有道路的空間,帶有緊開拓撲,則有自然的連續映射π:P(X;x0,A)→A,定義如下:對於ω∈P(X,x0,A),π(ω)=ω(1).若n≥1是整數,則(X,A,x0)的第n個相對同倫集πn(X,A,x0)定義為:
πn(X,A,x0)=π0(Ω(P(X;x0,A)),ω0),
其中Ω是定義在有基點的拓撲空間範疇上的閉路函子,π0(Ω(P(X;x0,A)),ω0)是Ω(P(X;x0,A))中包含常值閉路ω0的道路連通分支作為基點的所有道路連通分支的集合。由函子Ω的性質可知,πn(X,A,x0)=πn-1(P(X;x0,A),ω0)。對於n≥2,πn(X,A,x0)是一個群;;對於n≥3,它是一個交換群;對於一切n≥1,πn是定義在有基點的拓撲空間偶上的一個函子。若f:(X,A,x0)→(Y,B,y0)是空間偶之間的保基點連續映射,則記:
相對同倫有一些與相對同調相類似的性質,例如,相對同倫的正契約倫序列等。

同倫

設f、g是拓撲空間X到Y的兩個連續映射,若存在連續映射H:X×I→Y使得:
H(x,0)=f(x)
H(x,1)=gx∈X
則稱f與g同倫,記為f≃g:X→Y或f≃g,映射H稱為f與g之間的一個同倫。f與g的同倫H也可理解為單參數映射族{ht}t∈I,ht連續地依賴於t且h0=f,h1=g,即當參數t從0變到1時,映射f連續地形變為g。與常值映射同倫的映射稱為零倫的。若以C[X,Y]表示X到Y的一切連續映射之集,則同倫關係≃是C[X,Y]上等價關係,每個等價類稱為一個同倫類,同倫類的全體所成集記為[X,Y]。設Y是R的子空間,f,g:X→Y是連續映射,若對每個x∈X,點f(x)與g(x)可由Y中線段連結,則f≃g:X→Y,若Y是R中凸集,任何映射f:X→Y都零倫,即[X,Y]僅含一個元素。設X,Y與Z均為拓撲空間,若f≃f:X→Y,g≃g: Y→Z,則gf≃gf: X→Z。
設X,Y為拓撲空間,若存在連續映射f:X→Y和g:Y→X,使得gf≃Idx且f·g≃idr。這Id、id均表示恆同映射,則稱f為同倫等價,g為f的同倫逆,而將X與Y稱為具有相同的倫型,或簡稱同倫的,記作X≃Y。與單點空間同倫的空間稱為可縮的,或者存在x0∈X,使得常值映射C:X→X。x1→x0與映射idx同倫,空間X可縮。R和R中凸集均為可縮空間。同倫關係是拓撲空間之間的等價關係。X可縮等價於下列幾條中任意一條:(1)idx≃0,即恆同映射idx零倫。(2) 對任意空間Y,映射f:X→Y,有f≃0。(3)對任意空間Z和連續映射g:Z→X,g≃0。
設A是空間X的子空間,i:A→X表包含映射,若存在連續映射r:X→A,使得r|A=idA(或r·i=idA),則r稱為X到A的保核收縮,A稱為X的收縮核。若有保核收縮r:X→A滿足i·ridx:X→X,則H稱為X到A的形變收縮,A稱為X的形變收縮核,若同倫H還滿足對任意x∈A和t∈I有H(x,t)=x,則H稱為X到A的一個強形變收縮,A稱為X的強形變收縮核。強形變收縮是形變收縮,且若A是X的形變收縮核,則內射i:A→X是同倫等價。
兩個拓撲空間X和Y同倫等價的充要條件是:存在空間Z,使得X與Y分別同胚於Z的兩個強形變收縮核。
倫型相同的拓撲空間所共有的性質稱為同倫不變數。由於同胚的空間必同倫,故同倫不變數一定是拓撲不變數代數拓撲學主要研究空間的同倫。

同倫群

同倫群(homotopy groups)是基本群的高維推廣。基本群是從單位閉區間I到拓撲空間X的閉路的同倫等價類和其運算得到的。考慮n維歐氏空間R中的n維方體:
的邊界,即:
存在i使得
設X為拓撲空間,x0∈X,用Mn(X,x0)表示全體連續映射α:(
)→(X,x0)所成的集合,α和α′相對於I的同倫關係αα′是Mn(X,x0)上的一個等價關係,它把Mn(X,x0)的元素分成一些同倫等價類,用πn(X,x0)表示這些等價類所成的集合.定義映射α*β:(I,I)→(X,x0),使得:
從而,α*β∈Mn(X,x0),並且,若α∽α′,β∽β′,則:
因此,可在πn(X,x0)中定義運算:
並且關於這一運算使它構成群,仍記為πn(X,x0),稱為拓撲空間X的以x0為基點的n維同倫群。1維同倫群就是基本群π1(X,x0).同倫群還有一種等價定義方式,它是用n維球面S代替n維方體I,這種定義給討論同倫群的性質有時帶來方便。類似基本群的討論,同倫群具有性質:當拓撲空間是道路連通空間時,其同倫群與基點選取無關;利用連續映射誘導的同倫群之間同態的一些性質得出,同倫群是同倫型不變數(更是拓撲不變的);當n≥2時,同倫群πn(X,x0)是交換群,因而有時把運算寫成[α]+[β]。同倫群與同調群的一些基本關係:對於連通復形K的多面體|K|,1維同調群同構於基本群的交換化,即:
這裡[π1(|K|),π1(|K|)]表示基本群π1(|K|)的換位子群。高維同倫群與同調群之間的關係,由赫萊維茨(Hurewicz,W.)的同構定理給出:設|K|是連通復形K的多面體,當n≥2時,若|K|的1,2,…,n-1維同倫群都是平凡群,則πn(|K|)xHn(K)。

相關詞條

熱門詞條

聯絡我們