基本介紹
歷史發展
泰勒簡介
發展過程
公式形式
泰勒公式形式
![](/img/2/a6f/e39f651113311da6c0eacde083d2.jpg)
![泰勒公式 泰勒公式](/img/1/6e6/nBnauQGNkdTMzMmY1ITO5UmZ1U2NhJWZmFDMmZWMwYWZlRTO0UzY4YGO1I2LptWa39yYpB3LltWahJ2Lt92YuUHZpFmYuMmczdWbp9yL6MHc0RHa.jpg)
餘項
![](/img/4/dac/cc63aab90ddc864960a7d957ebb1.jpg)
![](/img/4/90d/299a3531f1e9afaa25f4e02e1019.jpg)
![](/img/8/e7d/4ca994a86de0e83dec772d77cb60.jpg)
![](/img/0/dd2/355a36cc2093fb6a5b81f8461789.jpg)
![](/img/a/05a/1ae938e2f1518965044420668fa5.jpg)
帶佩亞諾餘項
![](/img/1/fd3/e8c8f29cb16e1d36af0a32d5189c.jpg)
![](/img/6/4b0/bbd6dc67b16053c572352803dd35.jpg)
![](/img/3/85a/42d6fb8c71a7a7ca83142939bece.jpg)
![](/img/6/c4c/ba1bee9ba4c490c625283cfe9bba.jpg)
![](/img/a/f8d/b5fa52c8f3570831cf71b7af4929.jpg)
![](/img/c/29b/1accd21f536702d32eeb6a4f3cae.jpg)
![](/img/a/fb6/61e13e1ffd05cf435652d26c00da.jpg)
驗證推導
公式推導
![](/img/f/694/3c0c974a19e59a88f229198109e3.jpg)
![](/img/8/f2a/9280b1bdf843256ef5c89c70f2f9.jpg)
![](/img/b/c80/bef822eeb2a3afa1f2f993446a69.jpg)
![](/img/a/70e/11a3adb269b8e44fd1136f53f680.jpg)
![](/img/0/124/dc873a60f65225b118df25fc985e.jpg)
![](/img/f/aec/6cd4ce82e065016f1a817a03c85f.jpg)
![](/img/3/1ca/d680ee9aa0eca658b6282e36cd09.jpg)
![](/img/b/965/5529fd59d6b2ab4a255034d80141.jpg)
![](/img/7/5f4/d23db0941f78ccedaae32a88b958.jpg)
![](/img/1/2a1/557ecdc11ad68bc2f6d5cd7952c7.jpg)
![](/img/8/b66/8657a3c6fb5b4654b8b3337603b0.jpg)
![](/img/b/494/35b206cc780e4c784e54d771e8a1.jpg)
![](/img/1/bfb/9abc51641f8444582972c7d24c56.jpg)
![](/img/1/11c/a8a4a1e54a6f775099e436d32674.jpg)
![](/img/d/9ca/4418171dd96072f559f456eb1817.jpg)
![](/img/2/8f4/127fe37bb6c7ffae7649dd7df8ae.jpg)
![](/img/0/af1/b2b69c3c238a0ec43fd7d786dca2.jpg)
![](/img/4/b18/c3ca6d90a52f2adfccfe72bbf2ec.jpg)
![](/img/1/1a6/1bc2bc411bb011030558b9b7b0c1.jpg)
![](/img/4/b7a/c581a74dd8fc0d1d5f60973bb69b.jpg)
![](/img/4/4a6/e4b17e42f8863cff3c21975cbb34.jpg)
![](/img/5/e71/588084d5810a0305f9736c7ce97a.jpg)
![](/img/2/09c/4c7e2ce1cb99e81f76135e55ceee.jpg)
![](/img/8/cdc/8a84860e4ad7fe2457f318a54719.jpg)
![](/img/f/52b/69ee2a58ae62714939b107874ee3.jpg)
麥克勞林展開
![](/img/4/7c5/9c9eb535cb77105a6649f4f4c36b.jpg)
![](/img/6/1de/255155ff2d88798251fcbcc44330.jpg)
![](/img/9/277/efff093e871c6d099970b011c759.jpg)
![近似表達正弦函式 近似表達正弦函式](/img/a/fc9/nBnauMTY0UWMwcDOjFzMiRDZkhDN0YWZyMGZwQjYhRWY3YzM4EjN4kTM5Y2LptWa39yYpB3LltWahJ2Lt92YuUHZpFmYuMmczdWbp9yL6MHc0RHa.jpg)
公式套用
![](/img/6/0a1/548f95641364dd0da0074a37b7ad.jpg)
![](/img/9/6cb/9880022af0d41f6c810ed82d8c3e.jpg)
![](/img/e/1b2/84ba4275b04569004719c84f5aa8.jpg)
![](/img/c/671/71c8d04116df408926cfa4e81d7b.jpg)
![](/img/0/859/4b2f47f390acf22a551ab6ce986d.jpg)
![](/img/4/b29/8969aa1d96e3bf1e2fb8b3531926.jpg)
![](/img/7/813/3eef172729b84f7436b8d01ac5d4.jpg)
![](/img/8/c25/ab02b288589682aa66c8742a2b20.jpg)
![](/img/6/4db/05d000baa23386a9f8cc1f197f71.jpg)
![](/img/a/d9a/8aee94fa2c34e6f9ad11ca813d6b.jpg)
泰勒定理一般指本詞條
數學中,泰勒公式是一個用函式在某點的信息描述其附近取值的公式。如果函式足夠平滑的話,在已知函式在某一點的各階導數值的情況之下,泰勒公式可以用這些導數值做...
布魯克·泰勒(英語:Brook Taylor,1685年8月18日-1731年11月30日)出生於英格蘭密德薩斯埃德蒙頓,逝世於倫敦,是一名英國數學家,他主要以泰勒公式和泰勒級數出名。...
在數學中,泰勒級數(英語:Taylor series)用無限項連加式——級數來表示一個函式,這些相加的項由函式在某一點的導數求得。泰勒級數是以於1715年發表了泰勒公式的...
泰勒法則,即標準泰勒(Taylor)規則是常用的簡單貨幣政策規則之一,由泰勒於1993年針對美國的實際數據提出。泰勒規則描述了短期利率如何針對通脹率和產出變化調整的準則...
標準泰勒規則(Taylor rule)是常用的簡單貨幣政策規則之一,由史丹福大學的約翰.泰勒於1993年根據美國貨幣政策的實際經驗,而確定的一種短期利率調整的規則。...
泰勒士 國籍 古希臘 民族 希臘人 出生地 米利都 出生日期 約公元前624...在數學上,泰勒斯定理以他的名字命名,其內容為:若A,B,C是圓周上的三點,且AC...
康托爾-伯恩斯坦-施洛德定理(伯恩斯坦定理)(Cantor-Bernstein-Schroeder theorem)是集合論中的一個基本定理,得名於康托爾、Felix Bernstein 和 Ernst Schröder。該...
弗雷歇-泰勒公式(Frechet-Taylor formula)是經典的泰勒公式在F微分意義下的推廣。...... (x)在x0處的泰勒展開式,剩餘的Rn(x)是泰勒公式的餘項,是(x-x0)n的...
費馬大定理,又被稱為“費馬最後的定理”,由17世紀法國數學家皮耶·德·費瑪提出。他斷言當整數n >2時,關於x, y, z的方程 x^n + y^n = z^n 沒有正...
中值定理是反映函式與導數之間聯繫的重要定理,也是微積分學的理論基礎,在許多方面它都有重要的作用,在進行一些公式推導與定理證明中都有很多套用。中值定理是由眾多...
微分中值定理主要包括羅爾定理、拉格朗日定理、柯西定理、泰勒定理,其中羅爾定理是拉格朗日定理等的預備定理,由三個已知條件推得結果,三個已知條件缺一不可,即若要...
四色定理(世界近代三大數學難題之一),又稱四色猜想、四色問題,是世界三大數學猜想之一。四色定理的本質正是二維平面的固有屬性,即平面內不可出現交叉而沒有公共點...
棣莫弗定理由法國數學家棣莫弗(1667-1754年)創立。指的是設兩個複數(用三角函式形式表示)Z1=r1(cosθ1+isinθ1),Z2=r2(cosθ2+isinθ2),則:Z1Z2=...
蝴蝶定理(Butterfly Theorem),是古代歐氏平面幾何中最精彩的結果之一。這個命題最早出現在1815年,由W.G.霍納提出證明。而“蝴蝶定理”這個名稱最早出現在《美國數學...
牛頓-萊布尼茲公式(Newton-Leibniz formula),通常也被稱為微積分基本定理,揭示了定積分與被積函式的原函式或者不定積分之間的聯繫。牛頓-萊布尼茨公式的內容是一個...
麥克勞林公式是泰勒公式的一種特殊形式。...... 麥克勞林公式是泰勒公式的一種特殊形式。中文名 麥克勞林...他得到數學分析中著名的Maclaurin級數展開式,並用待定係數...
在工程實際問題的最佳化設計中,所列的目標函式往往很複雜,為了使問題簡化,常常將目標函式在某點鄰域展開成泰勒多項式來逼近原函式,此時函式在某點泰勒展開式的矩陣形式...