基本介紹
- 中文名:亞緊空間
- 外文名:metacompact space
- 別名:點式仿緊空間、弱仿緊空間
- 領域:數學
- 本質:拓撲空間
- 實例:仿緊空間
拓撲,拓撲性質,拓撲空間的性質,仿緊空間,強仿緊空間,亞緊空間,局部緊空間,
拓撲
拓撲是研究幾何圖形或空間在連續改變形狀後還能保持不變的一些性質的一個學科。它只考慮物體間的位置關係而不考慮它們的形狀和大小。
拓撲英文名是Topology,直譯是地誌學,最早指研究地形、地貌相類似的有關學科。幾何拓撲學是十九世紀形成的一門數學分支,它屬於幾何學的範疇。有關拓撲學的一些內容早在十八世紀就出現了。那時候發現的一些孤立的問題,在後來的拓撲學的形成中占著重要的地位。
拓撲性質
1.X和空集{}都屬於T;
2.T中任意多個成員的並集仍在T中;
3.T中有限多個成員的交集仍在T中。
稱集合X連同它的拓撲τ為一個拓撲空間,記作(X,T)。
稱T中的成員為這個拓撲空間的開集。
定義中的三個條件稱為拓撲公理。(條件(3)可以等價的換為τ中兩個成員的交集仍在τ中。)
從定義上看,給出某集合的一個拓撲就是規定它的哪些子集是開集。這些規定不是任意的,必須滿足三條拓撲公理。
一般說來,一個集合上可以規定許多不相同的拓撲,因此說到一個拓撲空間時,要同時指明集合及所規定的拓撲。在不引起誤解的情況下,也常用集合來代指一個拓撲空間,如拓撲空間X,拓撲空間Y等。
同時,在拓撲範疇中,我們討論連續映射。定義為:f: (X,T1) ------> (Y,T2) (T1,T2是上述定義的拓撲)是連續的若且唯若開集的原像是開集。兩個拓撲空間同胚若且唯若存在一一對應的互逆的連續映射。同時,映射同倫和空間同倫等價也是很有用的定義。
拓撲空間的性質
性質1集合X的離散拓撲T是X的最大拓撲,即對X的每一個拓撲T1,均有。
證明由拓撲T1的定義可得: 對A∈T1,有A∈ P(x)。此外,T是X的離散拓撲意味著T =P(x) ,因此,A∈T,從而由A的任意性可知。
性質2離散拓撲空間(X,T) 中:
①點x的鄰域系是Ux= AX | x∈ A},即凡是X的包含x的子集都是x的鄰域。
② X的每一個子集既開又閉。
證明對任意的x∈X,有{x}∈P(x)= T,故{x} 是開集。另外,對任意的x ∈ AX,有x∈{x}A,從而由鄰域的定義可知A是X的鄰域。
設A是X中的任一子集,那么有A∈P(x)=T,即A是開集。另一方面,由X ~ AX可得Ac∈P(x)= T, 故A是閉集。
註: 一般拓撲空間的子集也可能是既不開也不閉的。
性質3離散拓撲空間(X,T) 中,若AX,則A的導集A' =,即A中不含有任何一個聚點。
證明對任意的x∈X,存在x的一個開鄰域{x} ,使得{x}∩(A -{x} )=,從而x不是A的聚點,因此,由x的任意性可得:集合A中不含有任何一個聚點,即A' =。
仿緊空間
仿緊空間是一類重要的拓撲空間。為了討論拓撲空間的可度量化問題,迪厄多內(Dieudonné,J.)於1944年引入仿緊空間的概念。設X為拓撲空間。若X的任意開覆蓋都有局部有限的開覆蓋加細,則稱X為仿緊空間。緊空間是仿緊空間。度量空間也是仿緊空間。反之未必成立。仿緊空間是緊空間的一種最重要的推廣。對於這一類空間的研究,不僅從內容上推廣了緊空間理論,而且較大地發展了覆蓋方法,有力地推動了一般拓撲學的發展,特別是廣義度量空間理論和度量化問題的廣泛進展。另外,仿緊空間在微分流形、代數拓撲和泛函分析中也有重要的套用。仿緊性具有閉遺傳性。仿緊T2空間的閉連續像是仿緊T2的。仿緊T2空間是全體正規空間。全體正規空間是仿緊空間。仿緊T2空間中的Fσ集是仿緊的。在完全映射下,仿緊空間的原像是仿緊的。仿緊空間是亞緊的、可數仿緊的、族正規的。可數緊的仿緊空間是緊空間。林德勒夫空間是仿緊的。斯通(Stone,A.H.)於1948年、麥可(Michael,E.)於1953年給出了仿緊性的幾個等價條件。森田紀一(Morita,K.)和玉野(Tamano,H.)於1960—1962年也分別給出了幾個等價條件。
強仿緊空間
強仿緊空間(strongly paracompact space)亦稱星有限空間或S空間。是一類拓撲空間。設X是拓撲空間,若X的任意開覆蓋都存在星有限開覆蓋加細,則稱X為強仿緊空間。強仿緊空間是仿緊空間。正則的林德勒夫空間是強仿緊空間。強仿緊空間是島克(Dowker,C.H.)於1947年定義的。斯米爾諾夫(Смирнов,Ю.М.)於1956年給出了強仿緊空間的等價條件。卡普蘭(Kaplan,S.)和亞歷山德羅夫(Александров,П.С.)於1947年證明了可分度量空間是強仿緊的。
亞緊空間
亞緊空間 (metacompact space)亦稱點式仿緊空間或弱仿緊空間,是指一類拓撲空間。若拓撲空間X的任意開覆蓋都存在點有限的開覆蓋加細,則稱X為亞緊空間。若X的任意可數開覆蓋都存在點有限的開覆蓋加細,則稱X為可數亞緊空間。仿緊空間是亞緊空間。亞緊空間是可數亞緊空間。可數緊的亞緊空間是緊空間。亞緊的族正規空間是仿緊的,這是麥可(Michael, E.)和永見(Nagami, K.)於1955年分別獨立證明的。
局部緊空間
定義1空間X稱為i-型局部緊空間(i=1,2,3),是指它滿足下面的條件:
1)X中每一點都有一個緊鄰域;
2)X中每一點都有一個緊鄰域基;
3)X中每一點x的任意一個鄰域U包含一個開鄰域V,使得V U,且V是緊的.
定義2 空間X稱為i-型局部強仿緊空間(i=1,2,3),是指它滿足下面的條件:
1)X中每一點都有一個強仿緊鄰域;
2)X中每一點都有一個強仿緊鄰域基;
3)X中每一點x的任意一個鄰域U包含一個開鄰域V,使得V U,且V是強仿緊的.
定義3 在空間X中,Y是X的子集。若Y作為X的子空間是強仿緊空間,則稱Y是X的強仿緊子集。顯然強仿緊空間必是1-型局部強仿緊空間,因為強仿緊空間本身是它的任何一點的強仿緊鄰域。由定義2可知,三者之間的關係:3-型局部強仿緊空間是2-型局部強仿緊空間,也是1-型局部強仿緊空間。