《非調和分析方法及其套用》是依託昆明理工大學,由楊向東擔任項目負責人的地區科學基金項目。
基本介紹
- 中文名:非調和分析方法及其套用
- 項目類別:地區科學基金項目
- 項目負責人:楊向東
- 依託單位:昆明理工大學
《非調和分析方法及其套用》是依託昆明理工大學,由楊向東擔任項目負責人的地區科學基金項目。
《非調和分析方法及其套用》是依託昆明理工大學,由楊向東擔任項目負責人的地區科學基金項目。項目摘要本項目將部分經典的單複變函數唯一性定理推廣至多復變數的情形,由此討論高維實Banach空間中的某些逼近問題,如指數函式系的完...
潮汐非調和分析 潮汐非調和分析是2020年公布的測繪學名詞。定義 根據同一天文條件下潮汐變化規律的同一性,由實測資料進行統計,得出各地潮汐變化規律和有關常數的過程。出處 《測繪學名詞》。
該項目的另一個目的是套用非交換分析理論的結果和方法研究量子信息的相關問題。結題摘要 非交換調和分析與非交換鞅論屬於非交換分析數學的範疇,它們源於量子力學的數學基礎研究。現代非交換調和分析是由 Xu (許全華) 與 Junge 和 Le Merdy 在2006年開始系統研究的,他們發展了非交換 Littlewood-Paley-Stein 理論,...
《非線性偏微分方程的調和分析方法》是依託北京套用物理與計算數學研究所,由苗長興擔任項目負責人的面上項目。項目摘要 本課題是研究現代物理中出現的非線性發展方程及量子場方程組的柯西問題及其散射性理論,鑒於非線性項的長範圍效應及強耦合等特徵,波動方程及量子場方程組的研究舉步為艱且惶粽叫裕難芯慷...
《調和分析及其套用》是依託北京師範大學,由丁勇擔任項目負責人的重點項目。項目摘要 調和分析是現代數學的重要組成部分,調和分析的思想與方法已成為偏微分方程等數學領域中重要的工具。本項目組將在已有的調和分析理論及其在偏微分方程中的套用的基礎上,擬深入研究積分核的低正則性下拋物型和變數核的奇異積分運算元有界...
《調和分析在非交換遍歷論中的套用》是依託武漢大學,由洪桂祥擔任項目負責人的青年科學基金項目。項目摘要 隨著量子物理的發展,數學在非交換方向的發展已成為現代數學的重要研究領域。作為非交換分析領域的一個重要研究方向,非交換遍歷論的研究還不廣泛。 本項目的研究目標是沿著經典遍歷論的發展歷史全面展開對非交換...
《近代調和分析方法及其套用》是1999年科學出版社出版的圖書,作者是韓永生。內容簡介 本書十分精煉地介紹了調和分析的主要內容和方法,側重七十年代以來的新發展,其中包括八十年代以來取得的重大成果近代調和分析對偏微分方程發展的影響是巨大的,本書以Lipschitz區域的Dirichlet問題為例,介紹調和分析在偏微分方程中的...
《套用調和分析研究某些非橢圓非線性偏微分方程》是依託北京航空航天大學,由郭定輝擔任項目負責人的青年科學基金項目。項目摘要 研究了非橢圓運算元邊值問題特徵值估計問題,非線性波動方程的局部與整體適應性問題,臨界指數問題,以及以上某些問題的數值分析。研究中改進了已有方法,找到了一類適定解存在的空間,為進一步的...
本課題的主旨是將Littlewood-Paley分解、Bony的仿積分解、函式空間刻畫、調和函式的極值原理和調和擴張、Fourier 頻率局部化、壓縮感知方法和有限域上的調和分析等方法和工具套用到偏微分方程、信息科學等問題的研究,著重發展與偏微分方程、信息科學密切相關的調和分析現代理論,然後,用於研究非線性色散方程的局部適定性和...
《調和分析及其在偏微分方程中的套用》內容涉及調和分析的經典理論,特別是與偏微分方程研究密切相關的方法與技巧。例如:C-Z奇異積分運算元、Littlewood-Paley理論、抽象插值方法、可微函式空間的調和分析刻畫等。同時著力於用調和分析的方法研究偏微分方程。為此,詳細討論了振盪積分理論、Fourier限制型估計及相應的Strichartz...
《一類非線性項含導數的色散方程Cauchy問題的調和分析方法》是依託北京大學,由郭紫華擔任項目負責人的青年科學基金項目。項目摘要 自旋軌道耦合在凝聚態物理,包括自旋電子學,量子物質拓撲相等近10年來非常重要的領域扮演了核心角色。這些領域中理論和實驗的重大進展使得人們對自旋軌道耦合這一基本量子效應有了全新...
《非光滑區域上偏微分方程問題的調和分析方法》是依託寧波大學,由陶祥興擔任項目負責人的面上項目。科研成果 項目摘要 利用調和分析的理論和方法,研究非光滑區域上粗糙係數或含奇異低次項的二階橢圓型和拋物型偏微分方程的解或弱解的正則性和穩定性估計,研究邊界數據屬於Hardy空間、Besov空間、Triebel-Lizorkin等空間...
《非光滑區域上的偏微分方程問題與調和分析》是依託華南師範大學,由王衡庚擔任項目負責人的數學天元基金項目。項目摘要 近年來,套用調和分析等技術,研究非光滑區域上橢圓型、拋物型及非線性偏微分方程的弱解的適定性、空間理論、調和分析性質、不連續數據的邊值問題等,都是國際學術界關注的前沿問題。. 在非光滑區域...
《現代調和分析及其套用講義》是2018年6月1日高等教育出版社出版的圖書,作者是苗長興。內容簡介 現代調和分析,特別是Fourier限制性估計、微局部分析、擬微分運算元與Fourier積分運算元等融入幾何的觀念,在許多數學物理領域起著越來越重要的作用。本講義用現代觀點介紹調和分析的基本內容,特別是與偏微分方程研究密切相關的...
將通過運算元空間的具體實例研究Grothendieck綱領;研究完全有界Fourier-Schur乘子及其在逼近性質中的套用。(2)用運算元空間的理論和方法研究量子機率與非交換調和分析,主要目標是用非交換鞅不等式理論的最新成果建立量子隨機積分的Lp理論,它將為量子機率開闢廣闊的套用領域;研究量子Markov半群上的調和分析。(3)運算元空間和...