逆變換

逆變換

逆變換是相對於一個變換的一種變換,指把象點變為原象點點變換。

設 φ 是集合 S 的一個一一變換,它把 S 中的任一元素 x 變換為 φ(x)。 S 的另一個變換 φ-1 的逆變換。把每一個 φ(x) 變換為 x ,即 φ-1:φ(x)→x ,這個變換 φ-1 稱為變換 φ 的逆變換。

基本介紹

  • 中文名:逆變換
  • 外文名:inverse transformation
  • 適用範圍:數理科學
定義,性質,象點變為原象點點變換,可逆線性變換,

定義

逆變換亦稱反變換。它是相對任一變換,都有一個與之特殊相關的變換。
設 φ 是點集合 M 的一個點變換,根據 φ 是集合 M 到它自身的一一映射,M 到每個點 X 在 φ 下只有一個象也只有一個原象。因此可從變換 φ 得出一個與它相關的變換。它把 M 的任一點映射到該點在變換 φ 下的原象上去,這個新的映射也是一一映射,也是一個 M 到它自身的點變換,稱為變換 φ 點逆變換,通常記為φ-1

性質

關於麼變換與逆變換有兩個重要的等式:
設 φ 是集合 M 的任一個點變換,則有 εφ=φε=φ。
若 φ-1是 φ 的逆變換,則 φ 也是 φ-1的逆變換,φ 和 φ-1 滿足 φ-1φ=φφ-1ε 。

象點變為原象點點變換

逆變換是相對於一個變換的一種變換,指把象點變為原象點點變換。
設 φ 是集合 S 的一個一一變換,它把 S 中的任一元素 x 變換為 φ(x)。 S 的另一個變換 φ-1 的逆變換。把每一個 φ(x) 變換為 x ,即 φ-1:φ(x)→x ,這個變換 φ-1 稱為變換 φ 的逆變換。φ 也是 φ-1 的逆變換。φ 和φ-1 滿足恆等式:φφ-1-1φ=ε,也可把滿足這個等式的變換 φ-1 稱為變換 φ 的逆變換。

可逆線性變換

(invertible linear transformation)
可逆線性變換亦稱非退化線性變換,或滿秩線性變換,是一種特殊的線性變換。
設 V 是數域 P 上的線性空間,σ 是 V 的線性變換。若存在 V 的變換 τ ,使 στ=τσ=I ,其中 I 為單位變換,則σ 稱為可逆線性變換,τ 稱為 σ 逆變換。 V 上的可逆線性變換 σ 的逆變換仍為 V 的線性變換,且是惟一的,記為 σ-1。線性空間的可逆線性變換的集合,對於變換的乘法構成乘法群,稱為非奇異線性變換群。

相關詞條

熱門詞條

聯絡我們