規範場論

規範場論

規範場論(Gauge Theory),為量子力學的學科,是基於對稱變換可以局部也可以全局地施行這一思想的一類物理理論。非交換對稱群(又稱非阿貝爾群)的規範場論最常見的例子為楊-米爾斯理論。物理系統往往用在某種變換下不變拉格朗日量表述,當變換在每一時空同時施行,它們有全局對稱性。規範場論推廣了這一思想,它要求拉格朗日量必須也有局部對稱性—應該可以在時空的特定區域施行這些對稱變換而不影響到另外一個區域。這個要求是廣義相對論等效原理的一個推廣。

基本介紹

  • 中文名:規範場論
  • 外文名:Gauge Theory
  • 學科:量子力學
基本信息,簡史,例子,數學形式化,規範理論,參看,

基本信息

規範場論(Gauge Theory)是基於對稱變換可以局部也可以全局地施行這一思想的一類物理理論。非交換對稱群(又稱非阿貝爾群)的規範場論最常見的例子為楊-米爾斯理論。物理系統往往用在某種變換下不變拉格朗日量表述,當變換在每一時空同時施行,它們有全局對稱性。規範場論推廣了這一思想,它要求拉格朗日量必須也有局部對稱性—應該可以在時空的特定區域施行這些對稱變換而不影響到另外一個區域。這個要求是廣義相對論等效原理的一個推廣。
規範“對稱性”反映了系統表述的一個冗餘性。
規範場論在物理學上的重要性,在於其成功為量子電動力學弱相互作用強相互作用提供了一個統一的數學形式化架構——標準模型。這套理論精確地表述了自然界的三種基本力實驗預測,它是一個規範群為SU(3) × SU(2) × U(1)的規範場論。像弦論這樣的現代理論,以及廣義相對論的一些表述,都是某種意義上的規範場論。

簡史

最早包含規範對稱性的物理理論是詹姆斯·麥克斯韋電動力學。麥克斯韋在他的論文裡特別提出,這理論源自於開爾文男爵於1851年發現的關於磁矢勢的數學性質。但是,該對稱性的重要性在早期的表述中沒有被注意到。大衛·希爾伯特假設在坐標變換下作用量不變,由此推導出愛因斯坦場方程時,但它也沒有注意到對稱性的重要。之後,赫爾曼·外爾試圖統一廣義相對論電磁學,他猜想“Eichinvarianz”或者說尺度(“規範”)變換下的“不變性”可能也是廣義相對論的局部對稱性。後來發現該猜想將導致某些非物理的結果。但是在量子力學發展以後,外爾、弗拉基米爾·福克和弗里茨·倫敦實現了該思想,但作了一些修改(把縮放因子用一個複數代替,並把尺度變化變成了相位變化—一個U(1)規範對稱性),這相應於帶電荷的量子粒子波函式受到電磁場的影響,給定了一個漂亮的解釋。這是第一個規範場論。泡利在1940年推動了該理論的傳播。
1954年,為了解決一些基本粒子物理中的巨大混亂,楊振寧羅伯特·米爾斯引入非交換規範場論,來建構將核子綁在原子核中的強相互作用的模型。(Ronald Shaw,在阿卜杜勒·薩拉姆指導下,在他的博士論文中獨立地引入了相同的概念。)通過推廣電磁學中的規範不變性,他們試圖構造基於(非交換的)SU(2)對稱同位旋質子中子對上的作用的理論,類似於U(1)群在量子電動力學旋量上的作用。在粒子物理中,重點在於量子化規範場論
該思想後來被發現能夠用於弱相互作用量子場論,以及它和電磁學的電弱統一理論中。當人們意識到非交換規範場論能夠導出漸近自由的時候,規範場論變得更有吸引力,因為漸近自由被認為是強相互作用的一個重要特點—因而推動了尋找強相互作用的規範場論的研究。這個理論稱為量子色動力學,是一個SU(3)群作用在夸克色荷上的規範場論。標準模型用規範場論的語言統一了電磁力、弱相互作用和強相互作用的表述。
1970年代麥可·阿蒂亞爵士提出了研究經典楊-米爾斯方程的數學解的計畫。1983年,阿蒂亞的學生西蒙·唐納森在這個工作之上證明了光滑4-流形可微性分類和同胚性分類非常不同。麥可·弗里德曼採用唐納森的工作證明奇異R的存在,也就是,歐幾里得4維空間上的奇異微分結構。這導致對於規範場論作為數學理論的興趣逐漸增加,獨立於它在基礎物理中的成功。1994年,愛德華·威滕和Nathan Seiberg發明了基於超對稱的規範場技術,使得特定拓撲不變數的計算成為可能。這些數學上的成果也導致了對該領域的新興趣。

例子

電路接地的定義是規範對稱性的一個例子;當線路所有點的電位升高相同的值時,電路的行為完全不變;因為電路中的電位差不變。該事實的一個常見釋例是棲息在高壓電線上的鳥不會遭電擊,因為鳥對地絕緣。
這稱為整體規範對稱性。電壓的絕對值不是真實的;真正影響電路的是電路組件兩端的電壓差。接地點的定義是任意的,但一旦該點確定了,則該定義必須全局的採用。
相反,如果某個對稱性可以從一點到另一點任意的定義,它是一個局域規範對稱性。

數學形式化

規範理論通常用微分幾何的語言討論。數學上,一個規範就是某個主叢的(局部)截面的一個選擇。一個規範變換也就是兩個截面間的變換。
注意,雖然規範理論被聯絡的研究占據了大部分(主要是因為它主要在高能物理中研究),聯絡這個概念一般而言其非規範理論的中心概念。事實上,一般規範理論的一個結果表明規範變換的仿射表示(也就是仿射)可以分類到一種滿足特定屬性的節叢的截面。有些表示在每一點共變(物理學家稱其為第一類規範變換),有些表示象聯絡形式一樣變換(物理學家稱其為第二類規範變換,一種仿射表示),還有其它更一般的表示,例如BF理論中的B場。當然,我們可以考慮更一般的非線性表示(實現),但那很複雜。但是,非線性σ模型的變換是非線性地,所以它們也有用處。
若我們有一個主叢P其底空間是空間時空而結構群是一個李群,則P的截面組成一個規範變換群的主齊性空間。
我們可以在該主叢上定義一個聯絡(規範聯絡),這可以在每個配叢上產生一個共變導數∇。若我們選擇一個局部標架(截面的局部基),我們就可以用聯絡形式A表示這個共變導數,一個值為李代數的1-形式,在物理學中稱為規範勢,它顯然不是內在性質,而是一個依賴於標架的選擇的量。從這個聯絡形式,我們可以構造曲率形式F,這是一個值為李代數的2-形式,這是一個內在量,定義為
其中d代表外微分
代表楔積。
無窮小規範變換形成一個李代數,可以被一個光滑李代數值的標量,ε所刻畫。在這樣一個無窮小規範變換下,
其中
李括弧

規範理論

專用來量子化任何量子場論的方法也可用來量子化規範理論。但是,因為規範約束(參看上面的數學表述一節)的微妙性,會出現很多在其他場論不存在的技術問題,待為解決。同時,規範理論的更豐富的結構簡化了一些計算:例如Ward恆等式聯繫了不同的重整化常數。
方法和目標
第一個量子化的規範理論是量子電動力學(QED)。為此發展的最初的方法涉及規範固定和施行標準量子化。Gupta-Bleuler方法也被發展出來用於處理這個問題。非交換規範理論用很多不同的方法處理。量子化的方法在量子化條目有介紹。
量子化的要點,在於能夠計算理論所允許的各種過程的量子振幅。技術上,它們簡化為在真空態下的特定相關係數函式的計算。這涉及到理論的重整化
當理論的變動耦合足夠小時,所有需要計算的量可以用微擾理論計算。設計用於簡化這樣的計算的量子化方案(例如標準量子化)可以稱為“”微擾量子化方案”。
但是,在多數規範理論中,有很多有趣的問題是非微擾的。設計用於這些問題的量子化方案可以稱為非微擾量子化方案(像是格點規範場論)。這樣的方案的精確計算經常需要超級大量地計算,因而目前比其他方案的發展要少。
反常
一些理論經典的對稱性在量子理論中不再成立—這個現象稱為一個反常。最出名的包括:
共形反常,它導致了一個變動耦合常數。在QED中,這導致了朗道奇點(Landau pole)。在量子色動力學(QCD)中,這導致漸近自由
手征反常,出現在費米子手性或者矢量場論中。這通過瞬子的概念而和拓撲有緊密的關聯。
在QCD中,這個反常導致了π介子衰變成為兩個光子
規範反常,在任何自洽的物理理論中必須消去。在電弱理論中,這個消去要求夸克輕子數量相等。

參看

相關詞條

熱門詞條

聯絡我們