實變函式與泛函分析(2010年高等教育出版社出版的圖書)

實變函式與泛函分析(2010年高等教育出版社出版的圖書)

本詞條是多義詞,共5個義項
更多義項 ▼ 收起列表 ▲

《實變函式與泛函分析》是2010年6月高等教育出版社出版的圖書,作者是程其襄、張奠宙、魏國強。

基本介紹

  • 書名:實變函式與泛函分析
  • 作者:程其襄、張奠宙、魏國強
  • 出版社:高等教育出版社
  • 出版時間:2010年6月
  • 頁數:347 頁
  • 裝幀:平裝
  • ISBN:9787040292183
內容簡介,圖書目錄,

內容簡介

本次修訂是在第二版的基礎上進行的,作者根據多年來的使用情況以及數學的近代發展,做了部分但是重要的修改。《實變函式與泛函分析》共11章:實變函式部分包括集合、點集、測度論、可測函式、積分論、微分與不定積分;泛函分析則主要涉及賦范空間、有界線性運算元、泛函、內積空間、泛函延拓、一致有界性以及線性運算元的譜分析理論等內容。

圖書目錄

第一篇 實變函式
第一章 集合
1 集合的表示
2 集合的運算
3 對等與基數
4 可數集合
5 不可數集合
第一章習題
第二章 點集
1 度量空間,n維歐氏空間
2 聚點,內點,界點
3 開集,閉集,完備集
4 直線上的開集、閉集及完備集的構造
第二章習題
第三章 測度論
1 外測度
2 可測集
3 可測集類
4 不可測集
第三章習題
第四章 可測函式
1 可測函式及其性質
2 葉果洛夫定理
3 可測函式的構造
第四章習題
第五章 積分論
1 黎曼積分的局限性,勒貝格積分簡介
2 非負簡單函式的勒貝格積分
3 非負可測函式的勒貝格積分
4 一般可測函式的勒貝格積分
5 黎曼積分和勒貝格積分
6 勒貝格積分的幾何意義·富比尼定理
第五章習題
第六章 微分與不定積分
1 維它利定理
2 單調函式的可微性
4 不定積分
5 勒貝格積分的分部積分和變數替換
6 斯蒂爾切斯積分
7 L-S測度與積分
第六章 習題
第二篇 泛函分析
第七章 度量空間和賦范線性空間
1 度量空間的進一步例子
2 度量空間中的極限,稠密集,可分空間
3 連續映射
4 柯西點列和完備度量空間
5 度量空間的完備化
6 壓縮映射原理及其套用
7 線性空間
8 賦范線性空間和巴拿赫空間
第七章習題
第八章 有界線性運算元和連續線性泛函
1 有界線性運算元和連續線性泛函
3 廣義函式
第八章習題
第九章 內積空間和希爾伯特(Hilbert)空間
1 內積空間的基本概念
2 投影定理
4 希爾伯特空間上的連續線性泛函
5 自伴運算元、酉運算元和正常運算元
第九章習題
第十章 巴拿赫空間中的基本定理
1 泛函延拓定理
2 C[a,b]的共軛空間
3 共軛運算元
4 綱定理和一致有界性定理
5 強收斂、弱收斂和一致收斂
6 逆運算元定理
第十章習題
第十一章 線性運算元的譜
1 譜的概念
2 有界線性運算元譜的基本性質
4 自伴全連續運算元的譜論
5 具對稱核的積分方程
第十一章習題
附錄一 內測度,L測度的另一定義
附錄二 半序集和佐恩引理
附錄三 實變函式增補例題
參考書目
· · · · ·

相關詞條

熱門詞條

聯絡我們