冪等矩陣(idempotent matrix)定義:若A為方陣,且A=A,則A稱為冪等矩陣。例如,某行全為1而其他行全為0的方陣是冪等矩陣。實際上,由Jordan標準型易知,所有冪等矩陣都相似於對角元全為0或1的對角陣。
基本介紹
- 中文名:冪等矩陣
- 外文名:idempotent matrix
- 定義:A為方陣且A^2=A則A稱為冪等矩陣
- 類別:線性代數
冪等矩陣(idempotent matrix)定義:若A為方陣,且A=A,則A稱為冪等矩陣。例如,某行全為1而其他行全為0的方陣是冪等矩陣。實際上,由Jordan標準型易知,所有冪等矩陣都相似於對角元全為0或1的對角陣。
冪等矩陣(idempotent matrix)定義:若A為方陣,且A²=A,則A稱為冪等矩陣。例如,某行全為1而其他行全為0的方陣是冪等矩陣。實際上,由Jordan標準型易知,所有冪等...
若矩陣A既是對稱矩陣,又是冪等矩陣,則稱A為投影矩陣。... 若矩陣 滿足對稱矩陣(以主對角線為對稱軸,各元素對應相等的矩陣)和冪等矩陣( 為方陣,且 )的定義,...
半單矩陣(semisimple matrix)是一種特殊矩陣,指最小多項式無重根的矩陣。各種特殊的矩陣除半單矩陣外還有三角矩陣、冪零矩陣、冪等矩陣和冪麼矩陣等。半單矩陣可以...
《矩陣論引論(第2版)》是2012年10月北京航空航天大學出版社出版的圖書,作者是陳祖明、周家勝。...
穆爾-彭羅斯廣義逆矩陣(Moore-Penrose generalized inverse matrix)是逆矩陣概念的推廣,彭羅斯(R.Penrose)於1995年證明了對任一m×n階矩陣A,都存在惟一的n×m階...
《系統與控制中的矩陣理論》的第一作者張顯,曾連續五年為黑龍江大學數學科學學院的研究生講授“矩陣代數”課程,本書是在其講稿的基礎上,進行增刪、改寫而成的,書...
《矩陣論引論》為工科院校碩士研究生矩陣理論教材,內容包括:矩陣的初等性質;線性代數;矩陣分解;矩陣廣義逆;矩陣分析以及矩陣的直積和拉直運算。《矩陣論引論》敘述...
idempotent,英文單詞,主要用作為形容詞、名詞,作形容詞時譯為“ 冪等的”;作名詞時譯為“[數] 冪等”。...
k-次冪等矩陣線性組合群逆和超廣義冪等矩陣線性組合Moore-Penrose廣義逆的表示 數學年刊 2014 35 4 463-478 國內權威期刊 劉曉冀,王宏興 交換環上矩陣...
2.8.4 冪等矩陣 2.8.5 冪零矩陣 2.8.6 對合矩陣 2.8.7 正交矩陣 習題2 第3章 線性方程組 3.1 Cramer法則 3.2 齊次線性方程組 3.2.1 齊次線性方程組有...
idempotence,英文單詞,主要用作為名詞,作名詞時譯為“[數] 冪等性”。... idempotence idempotent matrix 冪等矩陣 Retries and Idempotence 重試和冪等性 law of ...
7.3 冪等矩陣與對合矩陣7.4 冪零矩陣7.5 循環矩陣習題七第八講 矩陣分解8.1 矩陣的秩分解8.2 矩陣的滿秩分解8.3 矩陣的LU分解...
[6]吳炎.有限局部環Z/qkZ上矩陣廣義逆的幾個計數結果,數學的實踐和認識,04年10月第10期。[7]吳炎 等.環Z/pkZ上s次冪等矩陣和矩陣的加權廣義逆,大學數學,...
1.4.2 矩陣奇異值的極小極大定理§1.5 廣義逆1.5.1 Moore-Penrose逆1.5.2 其他廣義逆§1.6 投影1.6.1 冪等矩陣和投影1.6.2 正交投影...
14.冪等矩陣 課題探究 問題解答 15.低秩矩陣的特徵多項式與最小多項式 課題探究 問題解答 16.高斯消元法的其他套用 課題探究 問題解答 17.單邊逆矩陣 課題探究 問...