集值映射亦稱多值映射,映射概念的推廣。設X和Y是兩個集合,記2Y={A|A⊂Y},稱之為Y的冪集,從X到Y的一個集值映射指的是從X到2Y的一個單值映射F:X→2Y,對於A⊂X,F(A)=∪{F(x)|x∈A}稱為A在F下的像,graph(F)={(x,y)∈X×Y|x∈X,y∈F(x)}稱為F的圖象,任意給定Γ⊂X×Y,則由F(x)={y∈Y|(x,y)∈Γ}(ᗄx∈X)可惟一確定集值映射F:X→2Y,使得graph(F)=Γ,由F-1(y)={x∈X|(x,y)∈graph(F)}(ᗄy∈Y)定義的集值映射F-1:Y→2X稱為F的逆映射。
設有F:X→2Y,dom(F)={x∈X|F(x)≠∅}稱為F的有效域,若ᗄx∈X有F(x)≠∅,則稱F具非空值,這時dom(F)=X,當Y是拓撲空間或賦范線性空間時,若ᗄx∈X,F(x)為閉集(相應地,緊集、凸集、有界集等),則稱F具閉值(相應地,具緊值、凸值、有界值等)。
基本介紹
- 中文名:集值映射
- 外文名:set-valued map
- 別稱:多值映射
- 所屬領域:拓撲學
- 相關概念:單值映射、凹函式、凸函式等
定義
![](/img/4/af8/0365ec6e07173a6e5d22543797f7.jpg)
![](/img/5/acf/0b4411817631ec0d866ced37c7f9.jpg)
![](/img/d/d74/a2062aef0690a4f1fd4528058298.jpg)
![](/img/1/92b/7567ee77de3200d880a1df7456a3.jpg)
![](/img/3/2c2/dce78cc646f74fb7686b48cd01b7.jpg)
![](/img/5/acf/0b4411817631ec0d866ced37c7f9.jpg)
![](/img/8/11e/fce326b98afe1b455521515a6d07.jpg)
![](/img/8/d56/b21ed233b3903caeee614d6056ed.jpg)
![](/img/0/097/8ea74e28aeac38d2d976b316e66c.jpg)
![](/img/5/acf/0b4411817631ec0d866ced37c7f9.jpg)
![](/img/1/92b/7567ee77de3200d880a1df7456a3.jpg)
![](/img/3/92a/dba51cc9169946af57b8b5827ea9.jpg)
![](/img/f/349/994a159e53fcdb0eaf88c2c30e31.jpg)
![](/img/f/509/479880e74ae4cf264bdf3e7d6d80.jpg)
![](/img/4/cdf/df784cbe96f896a4f827158e5318.jpg)
![](/img/5/a0e/6df8c7a6824796e0801c2e9238ae.jpg)
![](/img/2/909/daf7d345bec7f8fdf5e54b6677b5.jpg)
![](/img/e/b14/7b6aa5a1984156078608cb409c98.jpg)
![](/img/0/578/826511e1fd5804375269277cd532.jpg)
![](/img/9/b16/0156a3a5931d74f9e49e0ceb4d1c.jpg)
相關概念
凹函式
![圖1 圖1](/img/9/2d8/nBnauETMlN2YllTYmRWMxMmMjVTO1MjMzkTYyEDZhBDNmJ2N4AjMwI2NiBzLtVGdp9yYpB3LltWahJ2Lt92YuUHZpFmYuMmczdWbp9yL6MHc0RHa.jpg)
上半連續
![](/img/7/6c6/09a2f18dbfce5e38245567072a75.jpg)
![](/img/1/ac0/8abe8f4ed977d43f98413d1d20ef.jpg)
![](/img/c/3dc/3bbdea3a890502145a10396ee506.jpg)
![](/img/5/bac/c054875e5f07a74c3f21416bc2fe.jpg)
![](/img/8/6cb/3d48fc4694579285b0ec52ed8745.jpg)
![](/img/0/4c2/c5737ea1b847d1201bdd6dbc1893.jpg)
![](/img/0/4c2/c5737ea1b847d1201bdd6dbc1893.jpg)
下半連續
![](/img/7/ce8/a85cc1667b71f0e50ffffd1fae2e.jpg)
![](/img/a/494/ffddf32c4759848da99c24500f54.jpg)
![](/img/9/494/d99ab6fff9b3bd28c268dda1d928.jpg)
![](/img/0/4c2/c5737ea1b847d1201bdd6dbc1893.jpg)
![](/img/8/6c8/dcbe8ecdd0bf1f7fa8d08678d54f.jpg)
線性組合
![](/img/0/c7b/0fd402db8cc76fe537ea10cdbef0.jpg)
![](/img/6/167/3765b67d7b7bf9b443abc826c6ae.jpg)
![](/img/9/c14/f0e81b2542ea60c3621e48597cb4.jpg)
相關定理
定理1
![](/img/4/830/ef23eec7727aff7e0e7e760f3c89.jpg)
![](/img/b/093/d6e586b1f7b5632078258a99b59d.jpg)
定理2
![](/img/a/936/f220f7fc87ccfce195e3717f89ac.jpg)
![](/img/0/3d3/99967fdb816a29f2efa10304364e.jpg)
![](/img/5/c75/9d07f3c32c5e008ecdb041e5576b.jpg)
![](/img/2/bab/bc4bb7a4333678cb37140fe5043b.jpg)
![](/img/f/5e3/7ecbc8f65045e4260ad5fe93f4c1.jpg)
![](/img/9/2df/34b9c6963a6bb52f13feaa2bbee6.jpg)
![](/img/0/d45/317b607a51dff4047d7f24809720.jpg)
定理3
![](/img/e/5ee/92421503857b3befbb9814998533.jpg)
![](/img/4/bc8/f7d26e147e49e0936cc729d2d6f8.jpg)
![](/img/5/45b/653122d980f988819d0968c74018.jpg)
![](/img/e/5ee/92421503857b3befbb9814998533.jpg)
![](/img/2/7ae/e7acf6c1ef85fd16899842ae68c2.jpg)
![](/img/0/d45/317b607a51dff4047d7f24809720.jpg)
![](/img/3/ddc/121f22278a1baf08c4a688bc2019.jpg)