解析數論與組合數論中的幾個重要問題

解析數論與組合數論中的幾個重要問題

《解析數論與組合數論中的幾個重要問題》是依託中國科學院數學與系統科學研究院,由賈朝華擔任項目負責人的面上項目。

基本介紹

  • 中文名:解析數論與組合數論中的幾個重要問題
  • 項目類別:面上項目
  • 項目負責人:賈朝華
  • 依託單位:中國科學院數學與系統科學研究院
項目摘要,結題摘要,

項目摘要

解析數論與組合數論是兩個重要的數論分支。近年來,由於Tao,Green,Gowers和Bourgain等人的傑出工作,促進了這兩個分支的交叉融合,產生了很多深刻的新思想、新方法,推動了數論的整體發展。本項目將利用這些新的思想和方法,並結合解析數論中的有力工具,對於一些重要的數論問題-如埃及分數問題、向量空間上的和集問題以及素數模無和集的密度問題等-展開研究,期待得到實質性的進展。

結題摘要

本項目研究解析數論與組合數論中的幾個重要問題,申請人與合作者在除數函式的平方均值、帶可乘係數的Kloosterman和、帶可乘係數的移位特徵和問題上取得重要進展。除數函式的平方均值的漸近公式最早由印度天才數學家Ramanujan提出,是印度數論學派研究的一個重要課題。申請人與印度數學家A. Sankaranarayanan得到了漸近公式的一個新的餘項估計,這個結果要好過直接套用Riemann猜想所得到的結果。Kloosterman和在數論中扮演了重要的角色,關於它有系統而深入的研究。加拿大科學院院士A. Granville提出問題,問對於相當廣泛的一類Kloosterman和是否有非平凡估計。申請人和龔克解決了A. Granville的問題,其非平凡估計的範圍甚至好過先前的一些特殊情形所對應的範圍。特徵和估計是數論中的一個基本問題。早在1930年代,蘇聯數論大師I. M. Vinogradov就開始研究素變數移位特徵和。後來,A. A. Karatsuba又有所改進。申請人和龔克研究了相當廣泛的一類移位特徵和,得到了非平凡的估計。之後,申請人和龔克以及俄國數學家M. A. Korolev又做了進一步的改進。

相關詞條

熱門詞條

聯絡我們