導數(英語:Derivative)是微積分學中重要的基礎概念。一個函式在某一點的導數描述了這個函式在這一點附近的變化率。導數的本質是通過極限的概念對函式進行局部的線性...
導數(Derivative),也叫導函式值。又名微商,是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生一個增量Δx時,函式輸出值的增量Δy與自變數...
一階導數的導數稱為二階導數,二階以上的導數可由歸納法逐階定義。二階和二階以上的導數統稱為高階導數。從概念上講,高階導數可由一階導數的運算規則逐階計算,...
形如y'+P(x)y=Q(x)的微分方程稱為一階線性微分方程,Q(x)稱為自由項。一階,指的是方程中關於Y的導數是一階導數。線性,指的是方程簡化後的每一項關於y...
二階導數,是原函式導數的導數,將原函式進行二次求導。一般的,函式y=f(x)的導數y‘=f’(x)仍然是x的函式,則y’=f’(x)的導數叫做函式y=f(x)的二階...
導數光譜法亦稱微分光譜,屬紫外吸收光譜派生的一個分支, 由於對複雜組分可不經分離而直接測定,方法簡便、快速、準確,近年來得到迅速發展和廣泛套用。 ...
一階偏微分方程是最簡單的一類偏微分方程。一階偏微分方程的幾何理論有悠久的歷史淵源,以後經過É.(-J.)嘉當等人的發展,在幾何學、力學和物理學中都有重大的...
一階微分形式不變性是指:無論u,v是自變數還是中間變數,函式z=f(u,v)的全微分形式是一樣的。此性質的好處是:一方面是可以不用區分變數直接利用一元函式的微分...
三階導數是由原函式導數的導數的導數。...... 即原函式導數的導數的導數,將原函式進行三次求導,不代表該點的曲率,談幾何意義頂多只能算代表原函式一階導數的凹凸...
對於一元函式來說,如果在該方程中出現因變數的二階導數,我們就稱為二階(常)微分方程,其一般形式為F(x,y,y',y'')=0。在有些情況下,可以通過適當的變數...
形如y'=f(y/x)的一階微分方程,稱為齊次一階微分方程。齊次微分方程是一個微分方程,如果它的一個解乘以任意常數後,仍是它的解,則稱為齊次微分方程。對一階...
一階擬線性偏微分方程(quasi-linear partial differential equation of first order)是一類特殊的一階非線性偏微分方程,關於未知函式的偏導數是線性的一階非線性偏...
在數學中,微分運算元是定義為微分運算之函式的運算元。首先在記號上,將微分考慮為一個抽象運算是有幫助的,它接受一個函式得到另一個函式(以計算機科學中高階函式的...
一元微分又叫常微分。微分高階型 編輯 當自變數是多元變數時,導數的概念已經不適用了(儘管可以定義對某個分量的偏導數),但仍然有微分的概念。微分定義 ...
函式的極值 通過其一階和二階導數來確定。對於一元可微函式f (x),它在某點x0有極值的充分必要條件是f(x)在x0的某鄰域上一階可導,在x0處二階可導,且f...
這樣, 關於y的一階導數就非常重要了,而這個一階導數即為F.R.Macaulay在1938年提出的概念:久期(duration)。這個D也稱為“Macaulay久期”,它一方面代表著債券的...
簡單來講,線性微分方程是指關於未知函式及其各階導數都是一次方,否則稱其為非線性微分方程。...