線性微分方程

線性微分方程

簡單來講,線性微分方程是指關於未知函式及其各階導數都是一次方,否則稱其為非線性微分方程

基本介紹

  • 中文名:線性微分方程
  • 外文名:Linear differential equation
  • 所屬學科:高等數學
  • 相關數學家牛頓萊布尼茲柯西拉格朗日
  • 適用範圍:數理科學
  • 相關概念:線性方程、微分方程
定義,表達式,

定義

線性方程:在代數方程中,僅含未知數的一次冪的方程稱為線性方程。這種方程的函式圖象為一條直線,所以稱為線性方程。可以理解為:即方程的最高次項是一次的,允許有0次項,但不能超過一次。比如ax+by+c=0,此處c為關於x或y的0次項。
微分方程:含有自變數、未知函式和未知函式的導數的方程稱為微分方程。
如果一個微分方程中僅含有未知函式及其各階導數作為整體的一次冪,則稱它為線性微分方程。可以理解為此微分方程中的未知函式y是不超過一次的,且此方程中y的各階導數也應該是不超過一次的。

表達式

線性微分方程的一般形式是:
其中D微分運算元d/dx(也就是Dy = y'D2y = y",……),
是給定的函式。這個微分方程是n階的,因為方程中含有yn導數,而不含n+1階導數。
如果ƒ = 0,那么方程便稱為齊次線性微分方程,它的解稱為補函式。這是一種很重要的方程,因為在解非齊次方程時,把對應的齊次方程的補函式加上非齊次方程本身的一個特解,便可以得到非齊次方程的另外一個解。如果是常數,那么方程便稱為常係數線性微分方程

相關詞條

熱門詞條

聯絡我們