貝葉斯統計

貝葉斯統計

英國學者托馬斯·貝葉斯在《論有關機遇問題的求解》中提出一種歸納推理的理論,後被一些統計學者發展為一種系統的統計推斷方法,稱為貝葉斯方法。採用這種方法作統計推斷所得的全部結果,構成貝葉斯統計的內容。認為貝葉斯方法是唯一合理的統計推斷方法的統計學者,組成數理統計學中的貝葉斯學派,其形成可追溯到 20世紀 30 年代。到50~60年代,已發展為一個有影響的學派。時至今日,其影響日益擴大。

基本介紹

  • 中文名:貝葉斯統計
  • 外文名:Bayes statistics
  • 提出人托馬斯·貝葉斯
  • 提出時間:1763年
  • 關鍵字先驗分布、後驗分布
  • 起源於:英國
  • 套用領域:統計學
技術原理,先驗分布,後驗分布,理論爭議,發展歷史,

技術原理

先驗分布

它是總體分布參數θ的一個機率分布。貝葉斯學派的根本觀點,是認為在關於θ的任何統計推斷問題中,除了使用樣本X所提供的信息外,還必須對θ規定一個先驗分布,它是在進行推斷時不可或缺的一個要素。貝葉斯學派把先驗分布解釋為在抽樣前就有的關於θ的先驗信息的機率表述,先驗分布不必有客觀的依據,它可以部分地或完全地基於主觀信念。
例如,某甲懷疑自己患有一種疾病A,在就診時醫生對他測了諸如體溫、血壓等指標,其結果構成樣本X。引進參數θ:有病時,θ=1;無病時,θ=0。X的分布取決於θ是0還是1,因而知道了X有助於推斷θ是否為1。按傳統(頻率)學派的觀點,醫生診斷時,只使用X提供的信息;而按貝葉斯學派觀點,則認為只有在規定了一個介於0與1之間的數p作為事件{θ=1}的先驗機率時,才能對甲是否有病(即θ是否為1)進行推斷。p這個數刻畫了本問題的先驗分布,且可解釋為疾病A的發病率。先驗分布的規定對推斷結果有影響,如在此例中,若疾病A的發病率很小,醫生將傾向於只有在樣本X顯示出很強的證據時,才診斷甲有病。在這裡先驗分布的使用看來是合理的,但貝葉斯學派並不是基於 “p是發病率”這樣一個解釋而使用它的,事實上即使對本病的發病率毫無所知,也必須規定這樣一個p,否則問題就無法求解。

後驗分布

根據樣本 X 的分布Pθ及θ的先驗分布π(θ),用機率論中求條件機率分布的方法,可算出在已知X=x的條件下,θ的條件分布 π(θ|x)。因為這個分布是在抽樣以後才得到的,故稱為後驗分布。貝葉斯學派認為:這個分布綜合了樣本X及先驗分布π(θ)所提供的有關的信息。抽樣的全部目的,就在於完成由先驗分布到後驗分布的轉換。如上例,設p=P(θ=1)=0.001,而π(θ=1|x)=0.86,則貝葉斯學派解釋為:在某甲的指標量出之前,他患病的可能性定為0.001,而在得到X後,認識發生了變化:其患病的可能性提高為0.86,這一點的實現既與X有關,也離不開先驗分布。計算後驗分布的公式本質上就是機率論中著名的貝葉斯公式(見機率),這公式正是上面提到的貝葉斯1763年的文章的一個重要內容。
貝葉斯推斷方法的關鍵在於所作出的任何推斷都必須也只須根據後驗分布π(θ│X),而不能再涉及X的樣本分布Pθ。
例如,在奈曼-皮爾遜理論(見假設檢驗)中,為了確定水平α的檢驗的臨界值C,必須考慮X的分布Pθ,這在貝葉斯推斷中是不允許的。但貝葉斯推斷在如何使用π(θ│X)上,有一定的靈活性,例如為作θ的點估計,可用後驗分布密度h(θ|X)關於θ的最大值點,也可以用π(θ|X)的均值中位數(見機率分布)等。為作θ的區間估計,可以取區間[A(X),B(X)],使π(A(X)≤θ≤B(X)│X)等於事先指定的數1-α(0<;α<1),並在這個條件下使區間長度B(X)-A(X)最小。若要檢驗關於θ的假設H:θ∈ω,則可以算出ω的後驗機率 π(ω|X),然後在π(ω│X)<1/2時拒絕H。如果是統計決策性質(見統計決策理論)問題,則有一定的損失函式L(θ,α),知道了π(θ|X),可算出各行動α的後驗風險,即L(θ,α)在後驗分布π(θ|X)下的數學期望值,然後挑選行動α使這期望值達到最小,這在貝葉斯統計中稱為“後驗風險最小”的原則,是貝葉斯決策理論中的根本原則和方法。

理論爭議

貝葉斯學派與頻率學派爭論的焦點在於先驗分布的問題。所謂頻率學派是指堅持機率的頻率解釋的統計學家形成的學派。貝葉斯學派認為先驗分布可以是主觀的,它沒有也不需要有頻率解釋。而頻率學派則認為,只有在先驗分布有一種不依賴主觀的意義,且能根據適當的理論或以往的經驗決定時,才允許在統計推斷中使用先驗分布,否則就會喪失客觀性。另一個批評是:貝葉斯方法對任何統計問題都給以一種程式化的解法,這導致人們對問題不去作深入分析,而只是機械地套用公式。貝葉斯學派則認為:從理論上說,可以在一定條件下證明,任何合理的優良性準則必然是相應於一定先驗分布的貝葉斯準則,因此每個統計學家自覺或不自覺地都是“貝葉斯主義者”。他們認為,頻率學派表面上不使用先驗分布,但所得到的解也還是某種先驗分布下的貝葉斯解,而這一潛在的先驗分布,可能比經過慎重選定的主觀先驗分布更不合理。其次,貝葉斯學派還認為,貝葉斯方法對統計推斷和決策問題給出程式化的解是優點而非缺點,因為它免除了尋求抽樣分布,(見統計量)這個困難的數學問題。而且這種程式化的解法並不是機械地套公式,它要求人們對先驗分布、損失函式等的選擇作大量的工作。還有,貝葉斯學派認為,用貝葉斯方法求出的解不需要頻率解釋,因而即使在一次使用下也有意義。反之,根據機率的頻率解釋而提供的解,則只有在大量次數使用之下才有意義,而這常常不符合套用的實際。這兩個學派的爭論是戰後數理統計學發展中的一個特色。這個爭論還遠沒有解決,它對今後數理統計學的發展還將產生影響。

發展歷史

貝葉斯統計的歷史可以上溯到 16 世紀。1713 年,James Bernoulli 意識到在可用於機會遊戲的演繹邏輯和每日生活中的歸納邏輯之間的區別,他提出一個著名的問題:前者的機理如何能幫助處理後面的推斷。托馬斯.貝葉斯(ThomasBayes, 1702-1761)是長老會的牧師。他對這個問題產生濃厚的興趣,並且對這個問題進行認真的研究,期間,他寫了一篇文章來回答Bernoulli 的問題,提出了後來以他的名字命名的公式:貝葉斯公式。但是,直到貝葉斯死後才由他的朋友Richard Price 在 1763 年發表了這篇文章,對Bernoulli 的問題提供了回答。這篇文章標誌著貝葉斯統計的產生。但貝葉斯統計的思想在開始時並沒有得到重視。後來,Laplace 本人重新發現了貝葉斯公式,而且闡述得比貝葉斯更為清晰。由於貝葉斯統計對於機率的觀點過於主觀,與當時的主流統計觀點相左,此外也很難套用當時嚴謹的數學理論解釋。
例如貝葉斯統計中的先驗機率的觀點,一直以來都是貝葉斯統計學派和非貝葉斯統計學派爭論的焦點之一。在歷史上,貝葉斯統計長期受到排斥,受到當時主流的數學家們的拒絕。例如,近代優秀的統計學家R. A. Fisher 就是貝葉斯統計的反對者。然而,隨著科學的進步,貝葉斯統計在實際套用上取得的成功慢慢改變了人們的觀點。貝葉斯統計慢慢的受到人們的重視,貝葉斯統計已經成為統計學中一門很熱門的研究課題。
從貝葉斯為了回答James Bernoulli 的問題而寫的那一篇論文,提出著名的貝葉斯統計思想以來,經過幾百年的發展,關於貝葉斯統計的論文和學術專著有很多。統計界公認比較權威的貝葉斯統計的著作是James O. Berger 的作品:StatisticalDecisiontheory and Bayesian Analysis。國內有其中譯本:《統計決策論及貝葉斯分析》,它是由賈乃光主譯,吳喜之校譯,中國統計出版社出版。

相關詞條

熱門詞條

聯絡我們