基本介紹
- 中文名:線性相關
- 外文名:Linearly correlation
- 套用學科:線性代數
- 學科範圍:數理科學
- 相對概念:線性無關
- 判定方法關鍵:是否存在一組不全為零的數
定義
注意
- 對於任一向量組而言,,不是線性無關的就是線性相關的。
- 向量組只包含一個向量a時,a為0向量,則說A線性相關; 若a≠0, 則說A線性無關。
- 包含零向量的任何向量組是線性相關的。
- 含有相同向量的向量組必線性相關。
- 增加向量的個數,不改變向量的相關性。(注意,原本的向量組是線性相關的)
【局部相關,整體相關】 - 減少向量的個數,不改變向量的無關性。(注意,原本的向量組是線性無關的)
【整體無關,局部無關】 - 一個向量組線性無關,則在相同位置處都增加一個分量後得到的新向量組仍線性無關。
【無關組的加長組仍無關】 - 一個向量組線性相關,則在相同位置處都去掉一個分量後得到的新向量組仍線性相關。
【相關組的縮短組仍相關】 - 若向量組所包含向量個數等於分量個數時,判定向量組是否線性相關即是判定這些向量為列組成的行列式是否為零。若行列式為零,則向量組線性相關;否則是線性無關的。