向量空間

向量空間

向量空間又稱線性空間,是線性代數的中心內容和基本概念之一。在解析幾何里引入向量概念後,使許多問題的處理變得更為簡潔和清晰,在此基礎上的進一步抽象化,形成了與相聯繫的向量空間概念。譬如,實係數多項式的集合在定義適當的運算後構成向量空間,在代數上處理是方便的。單變元實函式的集合在定義適當的運算後,也構成向量空間,研究此類函式向量空間的數學分支稱為泛函分析

向量空間它的理論和方法在科學技術的各個領域都有廣泛的套用。

基本介紹

  • 中文名:向量空間
  • 外文名:Vector space
  • 別稱:線性空間、矢量空間
  • 所屬科目線性代數
  • 基本對象向量線性變換
  • 數學分支:泛函分析
詳細定義,公理化定義,線性無關,子空間,線性映射,額外結構,

詳細定義

向量空間亦稱線性空間。它是線性代數的中心內容和基本概念之一。設V是一個非空集合,P是一個域。若:
1.在V中定義了一種運算,稱為加法,即對V中任意兩個元素α與β都按某一法則對應於V內惟一確定的一個元素α+β,稱為α與β的和。
2.在P與V的元素間定義了一種運算,稱為純量乘法(亦稱數量乘法),即對V中任意元素α和P中任意元素k,都按某一法則對應V內惟一確定的一個元素kα,稱為k與α的積。
3.加法與純量乘法滿足以下條件:
1) α+β=β+α,對任意α,β∈V.
2) α+(β+γ)=(α+β)+γ,對任意α,β,γ∈V.
3) 存在一個元素0∈V,對一切α∈V有α+0=α,元素0稱為V的零元.
4) 對任一α∈V,都存在β∈V使α+β=0,β稱為α的負元素,記為-α.
5) 對P中單位元1,有1α=α(α∈V).
6) 對任意k,l∈P,α∈V有(kl)α=k(lα).
7) 對任意k,l∈P,α∈V有(k+l)α=kα+lα.
8) 對任意k∈P,α,β∈V有k(α+β)=kα+kβ,
則稱V為域P上的一個線性空間,或向量空間。V中元素稱為向量,V的零元稱為零向量,P稱為線性空間的基域.當P是實數域時,V稱為實線性空間.當P是複數域時,V稱為複線性空間。例如,若V為三維幾何空間中全體向量(有向線段)構成的集合,P為實數域R,則V關於向量加法(即平行四邊形法則)和數與向量的乘法構成實數域R上的線性空間。又如,若V為數域P上全體m×n矩陣組成的集合Mmn(P),V的加法與純量乘法分別為矩陣的加法和數與矩陣的乘法,則Mmn(P)是數域P上的線性空間.V中向量就是m×n矩陣。再如,域P上所有n元向量(a1,a2,…,an)構成的集合P對於加法:(a1,a2,…,an)+(b1,b2,…,bn)=(a1+b1,a2+b2,…,an+bn)與純量乘法:λ(a1,a2,…,an)=(λa1,λa2,…,λan)構成域P上的線性空間,稱為域P上n元向量空間。
線性空間是在考察了大量的數學對象(如幾何學與物理學中的向量,代數學中的n元向量、矩陣、多項式,分析學中的函式等)的本質屬性後抽象出來的數學概念,近代數學中不少的研究對象,如賦范線性空間、模等都與線性空間有著密切的關係。它的理論與方法已經滲透到自然科學、工程技術的許多領域。哈密頓(Hamilton,W.R.)首先引進向量一詞,並開創了向量理論和向量計算。格拉斯曼(Grassmann,H.G.)最早提出多維歐幾里得空間的系統理論。1844—1847年,他與柯西(Cauchy,A.-L.)分別提出了脫離一切空間直觀的、成為一個純粹數學概念的、抽象的n維空間。特普利茨(Toeplitz,O.)將線性代數的主要定理推廣到任意域上的一般的線性空間中。

公理化定義

設F是一個。一個F上的向量空間是一個集合V的兩個運算:
向量加法: V + V → V, 記作 v + w, ∃ v, w∈V
標量乘法: F × V → V, 記作 a·v, ∃a∈F, v∈V
符合下列公理 (∀ a, b ∈ F 及 u, v, w ∈ V):
  1. 向量加法結合律:u + (v + w) = (u + v) + w;
  2. 向量加法交換律:v + w = w + v;
  3. 向量加法的單位元:V 里有一個叫做零向量的 0,∀ v ∈ V , v + 0 = v;
  4. 向量加法的逆元素:∀v∈V, ∃w∈V,使得 v + w = 0;
  5. 標量乘法分配於向量加法上:a(v + w) = a v + a w;
  6. 標量乘法分配於域加法上: (a + b)v = a v + b v;
  7. 標量乘法一致於標量的域乘法: a(b v) = (ab)v;
  8. 標量乘法有單位元: 1 v = v, 這裡 1 是指域 F 的乘法單位元。
有些教科書還強調以下兩個公理:
V 閉合在向量加法下:v + w ∈ V
V 閉合在標量乘法下:a v ∈ V
更抽象的說,一個F上的向量空間是一個F-。V的成員叫作向量,而F的成員叫作標量。若F是實數域R,V稱為實向量空間;若F是複數域C,V稱為復向量空間;若F是有限域,V稱為有限域向量空間;對一般域F,V稱為F-向量空間。
首4個公理是說明向量V在向量加法中是個阿貝爾群,餘下的4個公理套用於標量乘法
以下都是一些很容易從向量空間公理推展出來的特性:
  • 零向量0 ∈ V(公理3)是唯一的
  • a 0 = 0,∀ a ∈ F
  • 0 v = 0,∀ v ∈ V,這裡 0 是F的加法單位元
  • a v = 0 ,則可以推出要么 a = 0 ,要么 v = 0
  • v的加法逆元(公理4)是唯一的(寫成−v),這兩個寫法v − w 及 v + (−w) 都是標準的
  • (−1)v = −v,∀ v ∈ V
  • (−a)v = a(−v) = −(av),∀ a ∈ F ,∀ v ∈ V

線性無關

如果V是一個線性空間,如果存在不全為零的係數c1, c2, ..., cn∈F,使得c1v1+ c2v2+ ... + cnvn= 0,那么其中有限多個向量v1, v2, ..., vn稱為線性相關的.
反之,稱這組向量為線性無關的。更一般的,如果有無窮多個向量,我們稱這無窮多個向量是線性無關的,如果其中任意有限多個都是線性無關的。

子空間

設W為向量空間 V 的一個非空子集,若W在 V 的加法及標量乘法下是封閉的,且零向量0 ∈ W,就稱W為 V 的線性子空間。
給出一個向量集合 B,那么包含它的最小子空間就稱為它的擴張,記作 span(B)。另外可以規定空集的擴張為{0}。
給出一個向量集合 B,若它的擴張就是向量空間 V, 則稱 B 為 V 的生成集合
給出一個向量集合 B,若B是線性無關的,且B能夠生成V,就稱B為V的一個基。若 V={0},唯一的基是空集。對非零向量空間 V,基是 V 最小的生成集,也是極大線性無關組
如果一個向量空間 V 擁有一個元素個數有限的生成集,那么就稱 V 是一個有限維空間。向量空間的所有基擁有相同基數,稱為該空間的維度。例如,實數向量空間:R0, R1, R2, R3, …中, Rn 的維度就是 n。
空間內的每個向量都有唯一的方法表達成基中向量的線性組合。而且,將基中向量進行排列,表示成有序基,每個向量便可以坐標系統來表示。

線性映射

若 V 和 W 都是域F上的向量空間,可以設定由V到W的線性變換或“線性映射”。這些由V到W的映射都有共同點,就是它們保持總和及標量商數。這個集合包含所有由V到W的線性映射,以 L(V, W) 來描述,也是一個域F上的向量空間。當 V 及 W 被確定後,線性映射可以用矩陣來表達。
同構是一對一的一張線性映射。如果在V 和W之間存在同構,我們稱這兩個空間為同構;域F上每一n維向量空間都與向量空間F同構。
一個在F場的向量空間加上線性映射就可以構成一個範疇,即阿貝爾範疇。

額外結構

研究向量空間很自然涉及一些額外結構。額外結構如下:
一個實數或複數向量空間加上長度概念。就是範數稱為賦范向量空間
一個實數或複數向量空間加上長度和角度的概念,稱為內積空間
一個向量空間加上拓撲學符合運算的(加法及標量乘法是連續映射)稱為拓撲向量空間
一個向量空間加上雙線性運算元(定義為向量乘法)是個域代數。

熱門詞條

聯絡我們