行列式在數學中,是一個函式,其定義域為det的矩陣A,取值為一個標量,寫作det(A)或 | A | 。無論是線上性代數、多項式理論,還是在微積分學中(比如說換元積分...
矩陣行列式是指矩陣的全部元素構成的行列式,設A=(aij)是數域P上的一個n階矩陣,則所有A=(aij)中的元素組成的行列式稱為矩陣A的行列式,記為|A|或det(A)。若...
如右圖利用加減消元法,為了容易記住其求解公式,但要記住這個求解公式是很困難的,因此引入三階行列式的概念。記稱左式的左邊為三階行列式,右邊的式子為三階行列式的...
在數學中,矩陣(Matrix)是一個按照長方陣列排列的複數或實數集合,最早來自於方程組的係數及常數所構成的方陣。這一概念由19世紀英國數學家凱利首先提出。矩陣是高等...
n個未知數n個線性方程所組成的線性方程組,它的係數矩陣的行列式叫做係數行列式(determinant of coefficient)。...
線上性代數中,迪厄多內行列式是矩陣與除環和局部環上矩陣的行列式的推廣。 它是在1943年由迪厄多內提出的。...
矩陣的秩是線性代數中的一個概念。線上性代數中,一個矩陣A的列秩是A的線性獨立的縱列的極大數,通常表示為r(A),rk(A)或rank A。線上性代數中,一個矩陣A的...
雅可比行列式通常稱為雅可比式(Jacobian),它是以n個n元函式的偏導數為元素的行列式 。事實上,在函式都連續可微(即偏導數都連續)的前提之下,它就是函式組的微分...
設λ-矩陣A(λ)的秩為r,對於正整數k,1<k<r,A(λ)中全部非零的k級子式的首項係數為1的最大公因式稱為A(λ)的k級行列式因子...
行列式在數學中,是由解線性方程組產生的一種算式。行列式的特性可以被概括為一個多次交替線性形式,這個本質使得行列式在歐幾里德空間中可以成為描述“體積”的函式。...
線性變換行列式是一種特殊行列式,指線性變換矩陣的行列式。設σ是數域P上的n維線性空間V的線性變換,因為相似矩陣有相等的行列式,所以可以把σ關於V的任意基的矩陣的...
旋轉矩陣(英語:Rotation matrix)是在乘以一個向量的時候有改變向量的方向但不改變大小的效果並保持了手性的矩陣。旋轉矩陣不包括點反演,點反演可以改變手性,也就是...
多項式矩陣即元為多項式的矩陣。... 多項式矩陣也像數字矩陣那樣定義行列式,並且多項式矩陣行列式的性質與數字矩陣行列式的性質相同。多項式矩陣初等變換 ①...
在向量微積分中,雅可比矩陣是一階偏導數以一定方式排列成的矩陣,其行列式稱為雅可比行列式。雅可比矩陣的重要性在於它體現了一個可微方程與給出點的最優線性逼近。...
設A 是n階方陣,如果存在數m和非零n維列向量 x,使得 Ax=mx 成立,則稱 m 是矩陣A的一個特徵值(characteristic value)或本徵值(eigenvalue)。...
將行列式D行的項轉為列的項成為行列式DT則行列式DT稱為行列式D的轉置行列式即行列式D行與列對換得到的新行列式DT例如D第一行為a11、a12、a13···a1n而DT第一行...
矩陣樹定理是一個計數定理,常用於解決無向聯通圖的生成樹計數問題。... 對於此類行列式求值的問題,常用的方法是著名的高斯消元法。因為將行列式的某一行整體加上...
初等矩陣是指由單位矩陣經過一次初等變換得到的矩陣。初等矩陣的模樣可以寫一個3階或者4階的單位矩陣。首先:初等矩陣都可逆,其次,初等矩陣的逆矩陣其實是一個同類型...
整數矩陣(integer matrix)是在數論中有重要套用的一種矩陣,指元素aij(i,j=1,2,…,n)都是整數的n階矩陣A=(aij),若n階整數矩陣A的行列式|A|=±1,則A稱...