歐幾里得(古希臘數學家幾何之父)

歐幾里得(古希臘數學家幾何之父)

本詞條是多義詞,共2個義項
更多義項 ▼ 收起列表 ▲

歐幾里得(英文:Euclid;希臘文:Ευκλειδης ,約公元前330年—公元前275年),古希臘人,數學家,被稱為“幾何之父”。他最著名著作幾何原本》是歐洲數學的基礎,提出五大公設,歐幾里得幾何,被廣泛的認為是歷史上最成功的教科書。歐幾里得也寫了一些關於透視圓錐曲線球面幾何學數論的作品。

基本介紹

  • 中文名:歐幾里得
  • 外文名:Ευκλειδης
  • 別名:Euclid
  • 國籍:古希臘
  • 出生地:雅典
  • 出生日期:約公元前330年
  • 逝世日期:公元前275年
  • 職業:數學家
  • 信仰:多神教
  • 主要成就:數學巨著《幾何原本
    歐幾里得算法
    完全數
  • 代表作品:《幾何原本
  • 語言:古希臘語
人物故事,身世,懂幾何者,編寫巨著,沒有捷徑,量金字塔,沒有好處,人物成就,完全數,歐幾里得算法,幾何原本,人物著作,人物評價,

人物故事

身世

可惜的是歐幾里德的身世我們知道得很少,他的《幾何原本》大概是亞歷山大大學的一個課本。亞歷山大大學是希臘文化最後集中的地方,因為亞歷山大自己到過亞歷山大,因此就建立了當時北非的大城,靠在地中海。但是他遠在到亞洲之後,我們知道他很快就死了。之後,他的大將托勒密管理當時的埃及區域。托勒密很重視學問,就成立了一個大學。這個大學就在他的王宮旁邊,是當時全世界最優秀的大學,設備非常好,有許多書。很可惜由於宗教的原因以及眾多的原因,現在這個學校已經被完全毀掉了。當時的基督教就不喜歡這個學校,已經被毀了,回教人占領北非之後就大規模地破壞、並焚燒圖書館的書。所以現在這個學校完全不存在了。

懂幾何者

歐幾里得(Euclid)是古希臘著名數學家、歐氏幾何學開創者。歐幾里得出生於雅典,當時雅典就是古希臘文明的中心。濃郁的文化氣氛深深地感染了歐幾里得,當他還是個十幾歲的少年時,就迫不及待地想進入柏拉圖學園學習。
一天,一群年輕人來到位於雅典城郊外林蔭中的柏拉圖學園。只見學園的大門緊閉著,門口掛著一塊木牌,上面寫著:“不懂幾何者,不得入內! ”這是當年柏拉圖親自立下的規矩,為的是讓學生們知道他對數學的重視,然而卻把前來求教的年輕人給鬧糊塗了。有人在想,正是因為我不懂數學,才要來這兒求教的呀,如果懂了,還來這兒做什麼?正在人們面面相覷,不知是進是退的時候,歐幾里得從人群中走了出來,只見他整了整衣冠,看了看那塊牌子,然後果斷地推開了學園大門,頭也沒有回地走了進去。

編寫巨著

最早的幾何學興起於公元前7世紀的古埃及,後經古希臘等人傳到古希臘的都城,又借畢達哥拉斯學派系統奠基。在歐幾里得以前,人們已經積累了許多幾何學的知識,然而這些知識當中,存在一個很大的缺點和不足,就是缺乏系統性。大多數是片斷、零碎的知識,公理與公理之間、證明與證明之間並沒有什麼很強的聯繫性,更不要說對公式和定理進行嚴格的邏輯論證和說明。
因此,隨著社會經濟的繁榮和發展,特別是隨著農林畜牧業的發展、土地開發和利用的增多,把這些幾何學知識加以條理化和系統化,成為一整套可以自圓其說、前後貫通的知識體系,已經是刻不容緩,成為科學進步的大勢所趨。歐幾里得通過早期對柏拉圖數學思想,尤其是幾何學理論系統而周詳的研究,已敏銳地察覺到了幾何學理論的發展趨勢。
他下定決心,要在有生之年完成這一工作,成為幾何第一人。為了完成這一重任,歐幾里得不辭辛苦,長途跋涉,從愛琴海邊的雅典古城,來到尼羅河流域的埃及新埠—亞歷山大城,為的就是在這座新興的,但文化蘊藏豐富的異域城市實現自己的初衷。在此地的無數個日日夜夜裡,他一邊收集以往的數學專著和手稿,向有關學者請教,一邊試著著書立說,闡明自己對幾何學的理解,哪怕是尚膚淺的理解。經過歐幾里得忘我的勞動,終於在公元前300年結出豐碩的果實,這就是幾經易稿而最終定形的《幾何原本》一書。這是一部傳世之作,幾何學正是有了它,不僅第一次實現了系統化、條理化,而且又孕育出一個全新的研究領域——歐幾里得幾何學,簡稱歐氏幾何。直到今天,他所創作的幾何原本仍然是世界各國學校里的必修課,從國小到國中、大學、再到現代高等學科都有他所創作的定律、理論和公式套用。
《幾何原本》《幾何原本》

沒有捷徑

在柏拉圖學派晚期導師普羅克洛斯(約410~485)的《幾何學發展概要》中,就記載著這樣一則故事,說的是數學在歐幾里得的推動下,逐漸成為人們生活中的一個時髦話題(這與當今社會截然相反),以至於當時亞里山大國王托勒密一世也想趕這一時髦,學點兒幾何學。
位於牛津大學自然歷史博物館的歐幾里得石像位於牛津大學自然歷史博物館的歐幾里得石像
雖然這位國王見多識廣,但歐氏幾何卻令他學的很吃力。於是,他問歐幾里得“學習幾何學有沒有什麼捷徑可走?”,歐幾里得笑道:“抱歉,陛下!學習數學和學習一切科學一樣,是沒有什麼捷徑可走的。學習數學,人人都得獨立思考,就像種莊稼一樣,不耕耘是不會有收穫的。在這一方面,國王和普通老百姓是一樣的。” 從此,“在幾何學裡,沒有專為國王鋪設的大道。”這句話成為千古傳誦的學習箴言。

量金字塔

又有則故事。那時候,人們建造了高大的金字塔,可是誰也不知道金字塔究竟有多高。有人這么說:“要想測量金字塔的高度,比登天還難!”這話傳到歐幾里得耳朵里。他笑著告訴別人:“這有什麼難的呢?當你的影子跟你的身體一樣長的時候,你去量一下金字塔的影子有多長,那長度便等於金字塔的高度!”
歐幾里得(古希臘數學家幾何之父)

沒有好處

來拜歐幾里得為師,學習幾何的人,越來越多。有的人是來湊熱鬧的,看到別人學幾何,他也學幾何。斯托貝烏斯(約500)記述了另一則故事,一位學生曾這樣問歐幾里得:“老師,學習幾何會使我得到什麼好處?”歐幾里得思索了一下,請僕人拿點錢給這位學生。歐幾里得說:給他三個錢幣,因為他想在學習中獲取實利。

人物成就

完全數

此外,歐幾里得在《幾何原本》中還對完全數做了探究,他通過 2^(n-1)·(2^n-1) 的表達式發現頭四個完全數的。
n= 2: 2^1(2^2-1) = 6 當 n= 3: 2^2(2^3-1) = 28 當 n= 5: 2^4(2^5-1) = 496 當 n= 7: 2^6(2^7-1) = 8128 一個偶數是完全數,若且唯若它具有如下形式:2^(n-1).(2^n-1),此事實的充分性由歐幾里得證明,而必要性則由歐拉所證明。
其中2^(n)-1是素數,上面的6和28對應著n=2和3的情況。我們只要找到了一個形如2^(n)-1 的素數(即梅森素數),也就知道了一個偶完全數。在手算時代梅森素數可使人們更方便的計算完全數,在計算機時代更是得到了廣泛深入的套用,計算機的CPU可以更方便的計算各種數。
儘管沒有發現奇完全數,但是當代數學家奧斯丁·歐爾證明,若有奇完全數,則其形式必然是12p+ 1或36p+ 9的形式,其中p是素數。在10^300以下的自然數中奇完全數是不存在的。
首五個完全數是:
6
28
496
8128
33550336(8位)

歐幾里得算法

歐幾里德算法又稱輾轉相除法,用於計算兩個整數a,b的最大公約數。

幾何原本

《幾何原本》是一部集前人思想和歐幾里得個人創造性於一體的不朽之作。這部書已經基本囊括了幾何學從公元前7世紀到古希臘,一直到公元前4世紀——歐幾里得生活時期——前後總共400多年的數學發展歷史。
它不僅保存了許多古希臘早期的幾何學理論,而且通過歐幾里得開創性的系統整理和完整闡述,使這些遠古的數學思想發揚光大。它開創了古典數論的研究,在一系列公理、定義、公設的基礎上,創立了歐幾里得幾何學體系,成為用公理化方法建立起來的數學演繹體系的最早典範。
全書共分13卷。書中包含了5條“公理”、5條“公設”、23個定義和467個命題
在每一卷內容當中,歐幾里得都採用了與前人完全不同的敘述方式,即先提出公理公設和定義,然後再由簡到繁地證明它們。這使得全書的論述更加緊湊和明快。
而在整部書的內容安排上,也同樣貫徹了他的這種獨具匠心的安排。它由淺到深,從簡至繁,先後論述了直邊形、圓、比例論、相似形、數、立體幾何以及窮竭法等內容。其中有關窮竭法的討論,成為近代微積分思想的來源。
照歐氏幾何學的體系,所有的定理都是從一些確定的、不需證明而礴然為真的基本命題即公理演繹出來的。在這種演繹推理中,對定理的每個證明必須或者以公理為前提,或者以先前就已被證明了的定理為前提,最後做出結論。對後世產生了深遠的影響。

人物著作

他最著名的著作《幾何原本》是歐洲數學的基礎,總結了平面幾何五大公設,被廣泛的認為是歷史上最成功的教科書。歐幾里得也寫了一些關於透視、圓錐曲線球面幾何學數論的作品。歐幾里得使用了公理化的方法。這一方法後來成了建立任何知識體系的典範,在差不多二千年間,被奉為必須遵守的嚴密思維的範例。
除了《幾何原本》之外,他還有不少著作,可惜大都失傳。歐幾里得還有另外五本著作流傳至今。它們與《幾何原本》一樣,內容都包含定義及證明。
已知數》(Data)是除《原本》之外惟一保存下來的他的希臘文純粹幾何著作,體例和《原本》前6卷相近,包括94個命題。指出若圖形中某些元素已知,則另外一些元素也可以確定。
《圓形的分割》(On divisions of figures)現存拉丁文本與阿拉伯文本,論述用直線將已知圖形分為相等的部分或成比例的部分,內容與希羅(Heron of Alexandria)的作品相似。
反射光學》(Catoptrics)論述反射光在數學上的理論,尤其論述形在平面及凹鏡上的圖像。可是有人置疑這本書是否真正出自歐幾里得之手,它的作者可能是塞翁(Theon of Alexandria)。
現象》(Phenomena)是一本關於球面天文學的論文,現存希臘文本。這本書與奧托呂科斯(Autolycus of Pitane)所寫的On the Moving Sphere相似。
光學》(Optics)早期幾何光學著作之一,現存希臘文本。這本書主要研究透視問題,敘述光的入射角等於反射角等。認為視覺是眼睛發出光線到達物體的結果。還有一些著作未能確定是否屬於歐幾里得,而且已經散失。

人物評價

歐幾里得是古希臘最負盛名、最有影響的數學家之一。歐幾里得的《幾何原本》對於幾何學、數學和科學的未來發展,對於西方人的整個思維方法都有極大的影響。《幾何原本》是古希臘數學發展的頂峰。歐幾里得將公元前七世紀以來希臘幾何積累起來的豐富成果,整理在嚴密的邏輯系統運算之中,使幾何學成為一門獨立的、演繹的科學。

相關詞條

熱門詞條

聯絡我們