歐幾里德除法

歐幾里德算法又稱輾轉相除法,用於計算兩個整數a,b的最大公約數。其計算原理依賴於下面的定理

定理:gcd(a,b) = gcd(b,a mod b)

證明:a可以表示成a = kb + r,則r = a mod b

假設d是a,b的一個公約數,則有

d|a, d|b,而r = a - kb,因此d|r

因此d是(b,a mod b)的公約數

假設d 是(b,a mod b)的公約數,則

d | b , d |r ,但是a = kb +r

因此d也是(a,b)的公約數

因此(a,b)和(b,a mod b)的公約數是一樣的,其最大公約數也必然相等,得證。

基本介紹

  • 中文名:歐幾里德除法
  • 用途:計算兩個整數ab的最大公約數
  • 定理:gcd(a,b) = gcd(b,a mod b)
  • 又稱輾轉相除法
歐幾里德算法,步驟,

歐幾里德算法

歐幾里德算法又稱輾轉相除法,用於計算兩個整數a,b的最大公約數。其計算原理依賴於下面的定理
定理:gcd(a,b) = gcd(b,a mod b)
證明:a可以表示成a = kb + r,則r = a mod b
假設d是a,b的一個公約數,則有
d|a, d|b,而r = a - kb,因此d|r
因此d是(b,a mod b)的公約數
假設d 是(b,a mod b)的公約數,則
d | b , d |r ,但是a = kb +r
因此d也是(a,b)的公約數
因此(a,b)和(b,a mod b)的公約數是一樣的,其最大公約數也必然相等,得證。

步驟

歐幾里德算法(輾轉相除法)求兩個數的最大公約數的步驟如下:
先用小的一個數除大的一個數,得第一個餘數;
再用第一個餘數除小的一個數,得第二個餘數;
又用第二個餘數除第一個餘數,得第三個餘數;
這樣逐次用後一個數去除前一個餘數,直到餘數是0為止。那么,最後一個除數就是所求的最大公約數(如果最後的除數是1,那么原來的兩個數是互質數)。
例如求1515和600的最大公約數,
第一次:用600除1515,商2餘315;
第二次:用315除600,商1餘285;
第三次:用285除315,商1餘30;
第四次:用30除285,商9餘15;
第五次:用15除30,商2餘0。
1515和600的最大公約數是15

相關詞條

熱門詞條

聯絡我們