可定向叢是1993年全國科學技術名詞審定委員會公布的數學名詞。
基本介紹
- 中文名:可定向叢
- 外文名:orientable bundle
- 所屬學科:纖維叢理論
- 公布年度 :1993年
- 審定機構:全國科學技術名詞審定委員會
可定向叢是1993年全國科學技術名詞審定委員會公布的數學名詞。
可定向叢是1993年全國科學技術名詞審定委員會公布的數學名詞。定義存在定向的向量叢E為可定向叢。性質流形X上向量叢E為可定向叢,若且唯若第一斯蒂弗爾-惠特尼類w1(E)=0。E的定向與一一對應。出處《數學名詞》第一版。1...
定向叢是纖維具有協調定向的向量叢。實n維向量叢ξ的定向是一個函式,它給ξ的每個纖維F以一個定向,且服從下述局部相容性條件:對底空間的每個點b₀,存在一個局部平凡化區圖(N,h),b₀∈N,而h:N×Rⁿ→π(N),使得N上每個纖維F=π(b),從Rⁿ到F的同胚x↦h(b,x)是保定向的。纖維 對於...
向量叢定向是數學名詞。向量叢定向(orientation of vector bundle)具有定向性質的向量叢.設}_ (E,二,B)是n維向量叢,對於bEB,纖維E,,(作為向量空間)指定一個定向稱為x的一個定向,若滿足條件:對於任意bEl3,都存在叢卡(U,卯,使得對於任意二EU,列E.. : E.x}R是將w.}變成R”的同一固定定向的線性...
則Hₙ(M,M-x)可視為單生成元的自由R模,其生成元為R的單位元,則R定向相當於選取生成元。向量叢的定向 定義 向量叢E→X為可定向叢,若且唯若其第一斯蒂弗爾-惠特尼類w₁(E)=0。性質 若w₁(E)=0,則E的定向與H⁰(X;ℤ₂)一一對應。即對X上每個連通分支,E都有兩個可能的定向。
的定向纖維叢,或更準確地,是一個主U(1)-叢。它同倫等價於複線叢。在物理學中,圓叢是電磁學自然的幾何背景。圓叢是球叢的一個特例。3流形類 表面上的圓束是三維流形的一個重要例子。一個更一般的3-流形類是Seifert纖維空間,它可以被看作是一種“奇異”圓束,或者是一個二維orbifold上的圓束。與電動力...
定向井叢式井鑽井技術 定向井叢式井鑽井技術是由中國石油遼河油田分公司勘探開發研究院完成的科技成果,登記於1994年10月31日。成果信息 成果完成人 章一平;歐陽植穎;韓博文;武寶生;曹里民;廖潤康;何隱操;熊自衛;李立軍;廖學華;龐建新;劉興成等
微分幾何中,流形的餘切叢是流形每點的切空間組成的向量叢。本身作為一個流形的餘切叢總是可定向的。簡介 微分幾何中,流形的餘切叢是流形每點的切空間組成的向量叢。餘切空間有一個標準的辛形式,從中可以一個餘切叢的非退化的體積形式。因此,本身作為一個流形的餘切叢總是可定向的。套用 可以在餘切叢上定義一...
叢式井是指在一個井場或平台上,鑽出若干口甚至上百口井,各井的井口相距不到數米,各井井底則伸向不同方位。即一組定向井(水平井),它們的井口是集中在一個有限範圍內,如海上鑽井平台、沙漠中鑽井平台、人工島等。介紹 叢式井的廣泛套用是由於它與鑽單個定向井相比較,大大減少鑽井成本,並能滿足油田的整體...
所謂外形式叢,是指微分流形M各點處餘切空間的外代數的無交並,即 M上的r次外形式叢為 外形式叢也能成為一個微分流形。餘切叢 微分幾何中,流形的餘切叢是流形每點的切空間組成的向量叢。餘切空間有一個標準的辛形式,從中可以一個餘切叢的非退化的體積形式。因此,本身作為一個流形的餘切叢總是可定向的。
在地面上難以建立井場和安裝鑽井設備進行鑽井的地區,要勘探開發地下的油氣資源,唯一的辦法就是從該地區附近打定向井。在海洋或湖泊等水域上勘探開發石油,最好是建立固定平台,或採用移動式鑽井平台,或從岸邊打定向井、叢式定向井。當在鑽達油氣層所經過的地層中有難以穿過的複雜地層時,用定向井可以繞過這些複雜...
定向鑽探的主要優點是:能較準確地鑽到目的層,增加單井油氣或地下水產量,當採用叢式井和多底井時可節省占用陸地面積、減少鑽探設備搬遷工作量,節約鑽探工作量和鑽探工程成本等。鑽進技術方法主要有人工偏斜楔法、孔(井)底渦輪鑽和泥漿馬達(又稱液動螺桿鑽)和孔(井)底電鑽法,並輔以隨鑽測量技術以隨時自動...
從幾何觀點來看,所有旋量構成旋量叢(spinor bundle)。在數學與物理學中,旋量是與物理自旋理論以及數學中克利福德代數密切相關的某種幾何實體,在某種意義上是一種扭曲的張量。定義 設E為附有自旋結構ξ:P(E)→P(E)的定向黎曼向量叢,E的實旋量叢為 S(E)=P(E)×M 其中M為 的左模,μ:Spinₙ→SO(M)...
一般地,如果M是一個光滑n-流形,G是 GLₙ(R) 的一個子李群,我們定義M上一個G-結構為 F(M) 結構群到G的一個約化。具體地說,這是M上一個主G-叢 F(M),以及M上一個G-等變叢映射 在這種語言中,M上一個黎曼度量給出M上一個 O(n)-結構。下面是其它一些例子。每個定向流形有一個定向標架,這...
定向運動就是利用地圖和指北針依次到達地圖上所示的各個地點,以最短時間到達所有地點者為勝。定向運動通常在森林、郊區和城市公園裡進行,也可以在大學校園裡進行。 定向運動起源於瑞典,最初只是一項軍事體育活動。“定向”這兩個字在1886年首次使用,意思是在地圖和指北針的幫助下,越過不被人所知的地帶。真正的...
為行列式線叢,n-形式是它的截面。對不可定向流形,一個體積“偽”形式,也稱為“奇”或“扭曲”的體積形式,可以定義為定向叢的一個處處非0截面;這個定義同樣適用於定向流形。在這種看法下,(非扭曲的)微分形式就是“偶”n-形式。除非特別地討論扭曲形式時,我們總是略去形容詞“偶”。第一次明確地引入...
即斯蒂弗爾-惠特尼類與龐特里亞金類決定了非定向實向量叢的所有示性類,而對於定向實向量叢,還有歐拉類。套用 實向量叢可定向若且唯若w₁=0。流形可定向若且唯若其切叢可定向。流形為自旋流形,若且唯若其切叢有自旋結構。流形M₁與M₂的積流形M₁×M₂的斯蒂弗爾-惠特尼多項式為w(t)=w(t)w(t)...
對X上以阿貝爾李群G為結構群的向量叢的同構類,有自然同構 。設G= ,Cov₂(X)為X的二重覆疊空間的等價類的集合,則存在自然同構 。示性類 斯蒂弗爾-惠特尼類w為於切赫上同調群 取值的示性類。對正合列 ,有第一斯蒂弗爾-惠特尼類 ,則w₁(P)=0若且唯若P為主SOₙ叢,即P為可定向向量叢。對正...
的定理,對於可定向流形這樣的連通和分解除了因子的次序差別以外,在同胚的意義之下,是惟一確定的.對於不可定向流形,設屍為S‘上的不可定向Sa叢,M為不可定向流形,若有M=Mn,則必然還有M=Mb,M的這種改變稱為標準化.上述惟一性定理對於不可定向流形在標準化意義下也成立.緊緻3維流形的連通和分解,在某種意義下,可...