有理函式域(rational function field)是一種重要的純超越擴張。純超越擴張是一類重要的超越擴張。設擴域K在F上的超越基為S,若K=F(S),則稱此域擴張為純超越擴張,K為F的純超越擴域。
基本介紹
- 中文名:有理函式域
- 外文名:rational function field
- 領域:數學
- 學科:域論
- 性質:一種重要的純超越擴張
- 上層概念:超越擴張
有理函式域(rational function field)是一種重要的純超越擴張。純超越擴張是一類重要的超越擴張。設擴域K在F上的超越基為S,若K=F(S),則稱此域擴張為純超越擴張,K為F的純超越擴域。
有理函式域(rational function field)是一種重要的純超越擴張。純超越擴張是一類重要的超越擴張。設擴域K在F上的超越基為S,若K=F(S),則稱此域擴張為純超越...
有理函式是通過多項式的加減乘除得到的函式。在數學中,理性函式是可以由有理分數定義的任何函式,即代數分數,使得分子和分母都是多項式。 多項式的係數不需要是有理...
二次代數函式域,明顯決定了幾類實二次函式域的基本單位,決定了多類二次函式域的理想類數的下界,給出了類數為 1 的條件,給出了理想類群的結構的一系列定理。...
有理映射是代數簇上的有理函式概念的推廣。但是,它並不是集合意義下的映射。代數簇是代數幾何的基本研究對象。設k是一個域,域k上的代數簇就是一個整的、分離...
而有理簇(rational variety)是雙有理等價於代數閉域上的射影空間的代數簇。它當然是最簡單的代數簇。它可以等價地定義為代數閉域k上的代數簇X,X的有理函式域...
trigonometric function)與常數經過有限次的有理運算(加、減、乘、除、有理數次乘方、有理數次開方)及有限次函式複合所產生,並且能用一個解析式表示的函式。它...
亞純函式是在區域D上有定義,且除去極點之外處處解析的函式。在複分析中,一個複平面的開子集D上的亞純函式是一個在D上除一個或若干個孤立點集合之外的區域全...
域,數學辭彙,定義域,值域,數學名詞,函式經典定義中,因變數改變而改變的取值範圍叫做這個函式的值域,在函式現代定義中是指定義域中所有元素在某個對應法則下對應的...
域的特徵是交換代數中的基本概念。 一個域就是滿足加、減、乘、除 四則運算的集合。 比如有理數域, 有理函式域, 代數數域、伽羅華域等等。...
超橢圓曲線的函式域(超橢圓函式域)是有理函式域的二次擴張;從這個意義上講它是除了有理函式域之外的最簡單的代數函式域。虧格為2的曲線必定是超橢圓曲線。 超...
若一個代數簇V1到另一個代數簇V2的映射誘導了函式域之間的同構,則稱該映射為雙有理映射。設有兩個代數簇V1,V2,若V1中有一個稠密開集同構於V2的一個稠密...
曾炯之,即曾炯(1897—1940),數學家。我國最早從事抽象代數研究的學者,在有關函式域上代數的研究中獲得重要成果。...
伽羅瓦群為可交換群的數域,阿廷互反律向這個伽羅瓦群的任何一支一維表示配上一枚L函式,並斷言:此等 L-函式俱等於某些狄利克雷L函式(黎曼ζ函式的類推,由狄利克...