基本介紹
- 中文名:斯通表示定理
- 外文名:Stone's representation theorem for Boolean algebras
簡介,定理,與拓撲學和範疇論的聯繫,引用,
簡介
在數學中,斯通氏布爾代數表示定理聲稱所有布爾代數都同構於集合域。這個定理是深入理解在二十世紀上半葉所拓展的布爾代數的基礎。這個定理首先由斯通氏(1936年)證明,並以他的姓氏命名。斯通氏通過他對希爾伯特空間上的運算元的譜理論的研究而得出了它。
定理
與拓撲學和範疇論的聯繫
這個定理是斯通氏對偶性的特殊情況,它是在拓撲空間和偏序集合之間的對偶性的一般性框架。在布爾代數的範疇內,態射是布爾同態。在斯通氏空間的範疇內,態射是連續函式。斯通氏對偶性把利用真值表特徵化有限布爾代數推廣到了命題的無限集合。它系統性的利用了兩元素布爾代數2作為同態的目標,它的載體是{0,1}或真值{F,T}。
布爾代數 A 的斯通氏空間是在 A 上的所有二值同態的集合,帶有這種同態的網逐點收斂的拓撲。(構造 A 的斯通氏空間的可替代和等價的方式是作為 A 中所有超濾子的集合,帶有對每個 A 中的 a 的集合 {U:U是包含a的超濾子} 都是這個拓撲的基。我們使用了下面的同態方式。)
從布爾代數 A 到布爾代數 B 同態以自然方式對應於從斯通氏空間 B 到斯通氏空間 A 的連續函式。換句話說,這種對偶性是逆變函子。
引用
- 布爾代數主題列表
- 斯通氏空間