復隨機變數

復隨機變數

設X,Y是定義在同一個慨率空間上的兩個實隨機變數,稱Z=X+iY為一個復隨機變數,其中i2=-1。復隨機變數X+iY本質上是二維隨機變數(X,Y),具有二維隨機變數的一些性質。例如,實二維隨機變數(X1,Y1),(X2,Y2),…,(Xn,Yn)相互獨立,那么復隨機變數X1+iY1,X2+iY2,…,Xn+iYn也相互獨立。當復隨機變數Z=X+iY的實部X與虛部Y都有有限的數學期望,就定義E[Z]=E[X]+iE[Y]為Z的數學期望,若E[X]、E[Y]至少有一個不存在,就說E[Z]不存在。關於隨機變數數學期望的一些性質,對復隨機變數也成立。

基本介紹

  • 中文名:復隨機變數
  • 外文名:complex random variable  
  • 所屬學科:數學(統計學)
  • 相關概念:複數,隨機變數,數學期望等
基本介紹,復隨機變數的密度函式,期望值、方差和協方差,期望值,方差,協方差,復隨機變數的相關性,

基本介紹

一些重要的量往往是複數,如周期信號的傅立葉係數就是複數,因此需要一種記號,以便於處理取值為複數的隨機變數
,即
式中:實部X和虛部Y都是實隨機變數。

復隨機變數的密度函式

復隨機變數Z的實部X和虛部Y的聯合機率密度,稱為復隨機變數Z的密度函式,即
式中:
為一個實數。

期望值、方差和協方差

若將實隨機變數的期望值、方差和協方差推廣至復隨機變數時,則要求:
(1)當實隨機變數Y=0(或X=0)時,復隨機變數Z的矩應當等於實隨機變數X(或Y)的矩。
(2)必須保持隨機變數的矩的特性(如方差應為非負實數)。

期望值

復隨機變數Z的期望值規定為
當Y=0時,
,符合前述要求。

方差

復隨機變數Z的方差規定為
式中:上標*表示共軛。若Y=0,則
,符合要求。

協方差

兩個復隨機變數
之間的協方差規定為
如果
,則有
,符合要求。
對於隨機復向量XY,可推廣上述定義。其中,協方差矩陣表示成
式中:上標H表示取共軛轉置

復隨機變數的相關性

若復隨機變數
的協方差為零,即
則稱復變數
不相關
若復隨機變數
的二階混合矩為零,即
則稱復變數
正交
若復隨機變數
密度函式滿足
則稱復變數
獨立

相關詞條

熱門詞條

聯絡我們