利用分位數回歸的統計與經濟分析

利用分位數回歸的統計與經濟分析

《利用分位數回歸的統計與經濟分析》是2020年北京理工大學出版社出版的圖書。

基本介紹

  • 書名:利用分位數回歸的統計與經濟分析
  • 作者:霍麗娟
  • 出版社:北京理工大學出版社
  • 出版時間:2020年
  • 開本:16 開
  • 裝幀:平裝-膠訂
  • ISBN:9787568269308
內容簡介,圖書目錄,作者簡介,

內容簡介

異常值可以對傳統經典的統計量產生相當大的影響,並導致對變數及變數之間關係的分析發生偏差,從而得出錯誤的結論。不僅傳統的統計量。如何在異常值存在與否的情況下都能獲得更加穩健的結果,已經吸引了大量研究人員的興趣,並且已經發表了大量有影響力的文獻。多種穩健回歸方法被學者們提出來。分位數回歸,作為LAD從中位數向不同分位數的擴展,首先由Koenker和Bassett(1978)提出。由於它的穩健和有效性,同時允許研究人員不僅在中心而且在因變數的整個條件分布上研究經濟變數之間的關係等優點,分位數回歸被套用於經濟和金融等許多學術領域。
《利用分位數回歸的統計與經濟分析(英文版)》對於在金融風險存在時穩健統計量計算的投資組合的表現進行了研究,並對分位數回歸的理論和套用進行了研究,基於分位數回歸進一步分析我國省際數據下以及86個非石油國家的經濟成長趨同性,外國直接投資對增長的影響以及金融風險測量,以及風險度量等。
《利用分位數回歸的統計與經濟分析(英文版)》讀者適合為經濟學專業高年級本科生及研究生。

圖書目錄

Chapter 1 Introduction
1.1 Overview
1.2 Quantile Regression and Its Applications
References
Chapter 2 Robust Statistics and Robust Regressions
2.1 Introduction to Classical and Robust Approaches to Statistics
2.2 Least Squares Linear Regression
2.3 Robust Regression
2.3.1 Least Absolute Values Regression
2.3.2 M-estimator
2.4 Quantile Regression
2.4.1 Quantile Regression Model
2.4.2 The Finite-sample Distribution of Regression Quantiles
2.4.3 Quantile Regression Asymptotics
2.4.4 Wald Tests
2.4.5 Estimation of Asymptotic Covariance Matrix
2.4.6 Quantile Likelihood Ratio Tests
References
Chapter 3 Robust Estimates of Covariance
3.1 Conventional Measure of Covariance
3.2 Robust Measures of Covariance
3.2.1 Median Absolute Deviation About the Median (MAD)
3.2.2 Gnanadesikan and Ketenring Robust Measures of Covariance
3.2.3 M-estimates
3.2.4 Minimum Volume Ellipsoid Estimate (MVE)
3.2.5 S-estimates
3.2.6 Minimum Covariance Determinant Estimate (MCD)
3.3 An Alternative Robust Measure of Covariance
3.4 Monte Carlo Simulations
3.5 Empirical Application
3.5.1 Empirical Comparison of Robust Estimates
3.5.2 Portfolio Performances of Robust Covariances
3.6 Conclusion
3.7 Appendix: Derivation of Conventional Covariance with Outlier(s)
References
Chapter 4 Quantile Regression Serial Correlation Tests
4.1 Spurious Autocorrelation in Quantile Models
4.1.1 Standard LM Test for Linear Model with AR(p) Errors
4.1.2 Theoretical Explanation to the Occurance of Spurious Autocorrelation
4.2 Correctly-sized Tests
4.2.1 QF test
4.2.2 The QR-LM Test
4.3 Monte-Carlo Simulations
4.4 An Empirical Example
4.5 Conclusion
4.6 Appendix
References
Chapter 5 Growth Empirics Based on IV Panel Quantile Regression
5.1 Economic Growth Convergence
5.2 Quantile Regression for Panel Data Model with Fixed Effects
5.3 Growth Convergence at the Conditional Mean
5.4 Growth Convergence at Different Conditional Quantiles
5.5 Empirical Results from 86 Non-oil Countries
5.5.1 Data and Samples
5.5.2 Empirical Results
5.5.3 Conclusion
5.6 Evidence from China Provincial Panel Data
5.6.1 Literature on China's Regional Economic Development
5.6.2 Model and Data
5.6.3 Empirical Results
5.6.4 Conclusion from China's Empirical Results
References
Chapter 6 The Impact of FDI on Economic Growth: an Empirical Evidence from IV Panel Quantile Regression
6.1 FDI and Economic Growth
6.2 IV Quantile Regression Model for Panel Data with Fixed Effects
6.3 Data and Empirical Results
6.4 Conclusion
6.5 Appendix
References
Chapter 7 Financial Risk Measurement: CoVaR
7.1 Financial Risk Transition Mechanism and Source of Risk in China
7.1.1 The Transmission Mechanism of Financial Risk in China
7.1.2 Sources of Financial Risk in China
7.2 Risk Measurements: VaR, CoVaR, and △CoVaR
7.2.1 Definition of VaR
7.2.2 Calculation of VaR
7.2.3 Definition of CoVaR and △CoVaR
7.2.4 Calculation of CoVaR
7.2.5 CoVaR Model Based on Quantile Regression
7.3 Empirical Study on Systemic Financial Risks in China
7.3.1 Data Selection
7.3.2 Data Processing and Descriptive Statistics
7.3.3 Identification of Systemically Important Financial Institutions
7.4 Static Risk Contribution of Financial Sub-industries on Financial System
7.4.1 Data Selection
7.4.2 Data Processing and Descriptive Statistics
7.5 Risk Spillover Effects Between Financial Sub-sectors
7.5.1 Static Risk Spillover Effects Between Financial Sub-sectors
7.5.2 Dynamic Risk Spillover Effects Between Financial Sub-industries
7.6 Conclusion
References
Chapter 8 Markov Regime Switching in Quantile Autoregression Stock Market Return Model
8.1 Introduction to Markov-switching model
8.2 Markov-switching Quantile Autoregressive Model for Stock Market Returns
8.3 Data Description and Empirical Results
8.4 Conclusion
References

作者簡介

霍麗娟,任職於北京理工大學人文與社會科學學院經濟系講師。作者2013年初博士畢業於韓國延世大學經濟學系,主要研究方向為計量經濟學、分位數回歸等。在博士導師Kim Tae-Hwan教授的指引和引導下,博士階段便對穩健統計和穩健回歸的相關研究產生興趣,並在畢業後仍在穩健統計和分位數回歸的理論和影響方面進行進一步研究。2017年作者主持的課題《基於高維VAR分位數回歸的系統性金融風險測度》獲得*人文青年基金支持,2019年作者主持的《馬爾科夫區制轉換分位數回歸模型研究》獲得國家自然科學基金青年項目的支持。

相關詞條

熱門詞條

聯絡我們