模型介紹
新巴塞爾協定對銀行的資本要求允許各國銀行可以採用內部模型來度量信用風險。由於20世紀90年代裡,公司倒閉的結構性增加、
脫媒效應的顯現、競爭的白熱化、擔保能力的下降、金融
衍生品的急劇膨脹、信息技術的飛速發展等因素促使人們加強對信用風險的研究,從而湧現出了現代信用風險度量模型。
類別
目前國際上運用較多的現代信用風險度量模型主要有:KMV公司的KMV模型、JP
摩根的信用度量術模型(ceditmetrics mode1)、
麥肯錫公司的巨觀模擬模型(credit portfolio view)、
瑞士信貸銀行的信用風險附加法模型(cridetrisk+)
死亡率模型(mortality rate)等。在
巴塞爾新資本協定即將實施的背景下,結合國有商業銀行的具體情況,對這些模型進行適用性分析,對加強國有商業銀行的風險管理具有重大意義。
KMV模型
KMV模型是由KMV公司利用
默頓的
期權定價理論開發的一種違約預測模型,模型的核心分析工具是預期違約頻率EDF(expected delinquency frequency),它的原理是銀行貸款相當於向債務人賣出一個
看跌期權,當企業資產的市場價值超過企業的負債時,企業有動力償還貸款,當企業資產的市場價值低於債務時,企業會行使期權,選擇違約。KMV模型根據借款公司的股票價格波動計算EDF,通過EDF來計算違約損失額LGD。
信用度量術模型
該模型由JP
摩根公司主持開發並於1997年推出,屬於盯市類(MTM)模型。模型的核心思想是組合價值的變化不僅受到債務人違約的影響,而且還會受到債務人信用等級轉移的影響。該模型通過求解
信貸資產在信用品質變遷影響下的價值分布,計算信用風險的VaR值,即在給定的置信區間上、在給定的時間段內,信貸資產可能發生的最大價值損失。
巨觀模擬模型
基於
經濟周期的各種巨觀因素會對債務人的信用等級轉移產生重要的影響,
麥肯錫公司借用Wilson的建模思想,將巨觀因素與轉移機率間的關係模型化,建立了巨觀模擬模型,以有條件轉移矩陣取代以歷史數據為基礎的無條件轉移矩陣,並求出對經濟周期敏感的VaR值。
信用風險附加法模型
死亡率模型
美國學者Altman等借鑑
壽險精算的思想開發出
債券的
邊際和累計死亡率表,俗稱
死亡率模型 ,基本思路是利用歷史違約數據,估計貸款壽命周期內每一年的邊際違約率MMR和累計違約率CMR,將違約率與LGD結合就可得到
預期損失的估計值,進一步可得到預期之外損失的估計值。
該模型認為各債券違約相互獨立,即不存在相關效應和連鎖反應,相同信用等級的債券違約情況相同,而不同債券類型的違約下的
損失率不同且相互獨立,但同一債券類型的違約下的損失率基本相同,這些與信用度量術有相同之處,但兩種模型在處理上有明顯不同。
事實上,該模型是用歷史數據統計不同信用等級下
債券的邊際死亡率和累計死亡率,同時,也可以統計出不同信用等級下的LGD,所以該方法比較容易理解,但套用也存在較大難度,主要是對數據量要求很大,許多單個商業銀行無法提供如此大的資料庫,如對有7個信用等級的債券的
損失進行比較精確測算,則樣本要達到 7萬多個,這對一般商業銀行是不可能的。
分析評價
KMV模型
該模型的優點是:KMV模型是一個動態模型,將借款公司的股價信息轉換成
信用信息,對借款公司質量的變化比較敏感,同時市場信息也被反映在模型當中,具有一定的前瞻性,模型的預測能力較強。
KMV模型在實際運用中存在的不足是:一是著重於違約預測,忽視了企業信用等級的變化,只適於評估與企業資產價值直接聯繫的
信貸資產(基本上只是貸款)的風險;二是該模型適用於上市公司的信用風險評估,由於我國的股市並不是一個有效的市場,上市公司的股票價格常常背離公司的實際價值,企業資產價值特別是國有企業的資產價值並不能夠完全反映到
股票市值中,從而影響了模型預測的精確性。但是,該模型可以運用到對跨國集團信貸資產的風險管理上,跨國企業的信貸資產很大部分以其母公司為擔保人,而其母公司所在國家的
股票市場是比較成熟有效的;三是模型基於資產價值服從常態分配的假設和實際不相符,模型不能夠對
長期債務的不同類型進行分辨。
信用度量術模型
該模型具有兩個優點:一是該模型屬於MTM(market to market)模型,並據此計算信用風險的VaR值,這與國有商業銀行的經營理念基本吻合;二是該模型首次將組合管理理念引入
信用風險管理領域,適用於
商業信用、
債券、貸款、
貸款承諾、
信用證、以及市場工具(互換、遠期等)等
信貸資產組合的風險計量。
該模型的局限在於:
一是該模型對信用風險的評判很大程度上依賴於借款人的信用等級的變化,在我國現有的信用環境下,出現大量損失的機率可能較高。
二是模型假設信用等級轉移機率是一個穩定的馬爾可夫過程,而實際中信用等級轉移與過去的轉移結果之間有很高的相關性。
三是該模型假設
無風險利率是事先決定的,我國債券市場尚不發達,還沒有形成合理的
基礎利率,而基礎利率是計算貸款現值的重要因素。
四是在我國目前還沒有比較客觀、權威的
信用評級公司,沒有現成的企業信用等級轉換機率和不同信用等級企業違約回收率數據資料。在商業銀行歷史貸款資料庫中,某一信用級別的企業在不同時期轉換成另一信用級別的機率可能是不相同的,某一信用級別的企業在各個時期違約回收率的均值可能也是不同的。這些不同時期的轉換機率和企業違約回收率均值就構成了混沌時間序列。如果假設經濟的巨觀因素沒有大的波動,就可以利用構成的混沌時間序列來預測短期未來的信用等級轉換機率矩陣和企業違約回收率均值。有了這些數據,國有商業銀行就可以套用信用度量術模型量化和管理信用風險。
五是該模型在實際運用中需要能夠做好信用等級評估工作的高素質的工作人員,另外由於該模型採用了蒙特卡羅模擬,運算量較大,以國有商業銀行現有的電腦網路系統,每次計算VAR值都需要幾個小時甚至十幾個小時,這樣的速度有時可能無法滿足業務發展的需要。
巨觀模擬模型
巨觀模擬模型將巨觀經濟因素對信用等級轉移機率的影響引入模型之中,對所有的
風險暴露都採用盯市法,彌補了信用度量術的不足。從實際套用的角度看,模型需要國家和各個行業的違約數據作為基礎。由於我國的信用風險量化處於起步階段,還沒有建立完善的資料庫,因此在使用該模型時缺乏基礎條件。
信用風險附加法模型
該模型的主要優勢體現在:易於求出
債券及其組合的
損失機率和邊際風險分布;模型集中於違約分析,所需估計變數很少,只需要違約和
風險暴露的分布即可;該模型處理能力很強,可以處理數萬個不同地區、不同部門、不同時限等不同類型的風險暴露;根據組合價值的損失分布函式可以直接計算組合的
預期損失和
非預期損失的值,比較簡便。該模型的劣勢在於:與KMV模型一樣,只將
違約風險納入模型,沒有考慮
市場風險,而且認為違約風險與
資本結構無關;沒有考慮信用等級遷移,因而任意債權人的債務價值是固定不變的,它不依賴於債務發行人信用品質和
遠期利率的變化與波動。儘管
違約機率受到一些隨機因素的影響,但
風險暴露並不受這些因素的影響;每一頻段違約率均值的方差並不完全相同,否則會低估違約率;不能處理非線性
金融產品,如
期權、外幣
掉期。
死亡率模型
該模型的主要優勢:比較容易利用死亡率表來計算單個
債券和債券組合的
預期損失及其
波動率,特別是計算債券組合很方便;死亡模型是從大量樣本中統計出來的一個模型,所以採用的參數比較少。該模型主要劣勢:沒有考慮不同債券的相關性對計算結果的影響;沒有考慮
巨觀經濟環境對死亡率的影響,因而需要時時更新死亡率表;數據更新和計算量很大;不能處理非線性產品,如期權、外幣掉期
信用度量模型的意義
下面以基於VaR的風險度最模型為例來說明在新巴塞爾議框架下風險度量模型的積極意義。
2001年, 巴塞爾委員會發布了旨在替代舊版巴塞爾協定的《
新巴塞爾資本協定》(以下簡稱新巴塞爾協定) 。在此框架下,商業銀行面臨的風險被分為三類:信用風險、
市場風險和操作風險。
VaR被運用於
商業銀行風險管理始於對於市場風險的監管。傳統的市場風險管理技術可以分為靈敏性分析和
波動性分析兩類,但這兩種方法在精確度、依賴性和全面性等方面存在明顯的缺陷,而正如Jorion指出的那樣,VaR方法他用規範的統計技術,全面地衡量市場風險,很好地彌補了靈敏性分析和波動性分析的缺陷,將市場風險管理技術提升到了一個新的高度 巴塞爾委員會也明確了用VaR 方法結合內部模型法來度量銀行面臨的市場風險的規定。
信用風險是商業銀行面臨的風險中最重要的一類風險,由於信用風險本身的一些特點, 運用VaR對其進行度量存在技術上的困難。但是隨著數量技術的發展,新一代金融工程學家運用新的建模技術和分析方法建立了一些暴於VaR技術的信用風險度量模型。其中比較著名的有CIBC提出的CreditVaR 系列方法和J.P.Mrgan提出的CreditMetrics。
在商業銀行皿臨的風險中,操作風險一直以來缺乏明確定義和足夠關注,在
新巴塞爾協定中一項重要的修改,就是將操作風險納入
風險資本的計算和監管框架。新巴塞爾協定中提供了多種可供選擇的計算操作風險資本盒的方法,其中比較複雜的損失分布法就需要運用VaR方法來確定操作風險資本。