定義
一個物理量如果存在
最小的不可分割的
基本單位,則這個物理量是量子化的,並把最小單位稱為量子。量子英文名稱量子一詞來自拉丁語quantus,意為“有
多少”,代表“相當數量的某物質”。在物理學中常用到量子的概念,指一個不可
分割的基本個體。例如,“光的量子”(
光子)是一定頻率的
光的基本能量單位。而延伸出的
量子力學、
量子光學等成為不同的專業研究領域。其基本概念為所有的有形性質是“可量子化的”。“量子化”指其物理量的
數值是離散的,而不是連續地任意取值。例如,在
原子中,電子的
能量是可量子化的。這決定了原子的穩定性和發射光譜等一般問題。絕大多數物理學家將量子力學視為了解和
描述自然的的基本
理論。
通俗地說,量子是能表現出某物質或物理量特性的最小
單元。
發展歷史
提出概念
在
經典物理學中,根據
能量均分定理:能量是
連續變化的,可以取任意值。19世紀後期,科學家們發現很多
物理現象無法用經典理論解釋。當時德國物理界
聚焦於
黑體輻射問題的研究。1900年左右,M·
普朗克試圖解決黑體輻射問題,他大膽提出量子假設,並得出了
普朗克輻射定律,沿用至今。普朗克提出:像原子作為一切物質的構成單位一樣,“
能量子”(
量子)
是能量的最小單位。物體吸收或發射電磁輻射,只能以能量量子的方式進行。普朗克在1900年12月14日的德國物理學學會會議中第一次發表能量量子化
數值、一個分子
摩爾(mol)的數值及
基本電荷等。其數值比以前更準確,提出的理論也成功解決了黑體輻射的問題,標誌著
量子力學的誕生。
1928年,英國物理學家
狄拉克完成了矩陣力學和波動力學之間的數學等價證明,對量子力學理論進行了系統的總結,並將兩大理論體系——
相對論和量子力學成功地結合起來,揭開了
量子場論的序幕。量子理論是
現代物理學的兩大基石之一,從
微觀層面理解巨觀現象提供了理論基礎。
量子假設的提出有力地
衝擊了
經典物理學,促進物理學進入微觀層面,奠基
現代物理學。但直到現在,物理學家關於量子力學的一些假設仍然不能被充分地證明,仍有很多需要研究的地方。
理論建立
普朗克提出能與觀測結果很好地符合的簡單公式,
實驗物理學家相信其中必定蘊藏著一個尚未被揭示出來的科學原理。
普朗克發現,如作如下假定則可從理論上導出其黑體輻射公式:對於一定頻率ν的
輻射,物體只能以hν為能量單位吸收或
發射它,h稱之為
普朗克常數。換言之,物體吸收或發射
電磁輻射,只能以量子的方式進行,每個量子的能量為E=hν,稱為作用量子。
從
經典力學來看,能量不連續的概念是絕對不允許的。但是在詮釋這個公式時,通過將物體中的原子看作微小的量子
諧振子,不得不假設這些量子諧振子的總能量不是連續的,即總能量只能是離散的數值(
經典物理學的觀點恰好相反)。普朗克進一步假設單獨量子諧振子吸收和放射的輻射能是量子化的,這一觀點嚴重地衝擊了經典物理學。
量子論涉及
物質運動形式和運動規律的根本變革。
首先注意到
量子假設有可能解決經典物理學所碰到的其他疑難的是
愛因斯坦。他試圖用量子假設去說明
光電效應中碰到的疑難,提出了
光量子概念,認為
輻射場就是由光量子組成。每一個光量子的能量E與輻射的頻率ν的關係是E=hν。採用光量子概念之後,光電效應中出現的疑難隨即迎刃而解。
至此普朗克提出的能量不連續的概念,才逐漸引起物理學家的注意。就這樣,一位謹慎的物理學家
普朗克掀起了20世紀初量子
物理學革命的帷幕。
量子力學
量子力學就是在克服早期量子論的困難和局限性中建立起來的。在普朗克—愛因斯坦的光量子論和玻爾的原子論的啟發下,法國物理學家L.
德布羅意分析了光的微粒說與
波動說的發展歷史,並注意到
幾何光學與經典粒子力學的相似性,根據類比方法構想實物(靜質量
m≠0的)
粒子也和光一樣,具有
波粒二象性,且這兩方面必有類似的關係相聯繫,而普朗克常數必定出現在其中。他假定與一定能量E和動量p的
實物粒子相聯繫的波(稱為“
物質波”)的頻率和
波長分別為 ν=E/h,λ=h/p
,稱為德布羅意關係式。他提出這個假定一方面是企圖把作為物質存在的兩種形式(光和
m≠0的實物粒子)統一起來;另一方面亦是為了更深入地理解微觀粒子能量的不連續性,以克服
玻爾理論帶有人為性質的缺陷。德布羅意把原子
定態與
駐波聯繫起來,即把束縛運動實物粒子的能量
量子化與有限空間中駐波的
波長(或
頻率)的離散性聯繫起來。
奧地利物理學家E.
薛丁格注意到了德布羅意的工作,1926年初他提出了一個
波動方程——
薛丁格方程,是含波動函式對
空間坐標的二階
微商的
偏微分方程。薛丁格把原子的離散
能級與微分方程在一定的邊界條件下的
本徵值問題聯繫起來,成功說明了
氫原子、
諧振子等的能級和
光譜的規律。幾乎與此同時,W.海森伯與M.
玻恩和E.約當建立了矩陣力學。矩陣力學的提出,與
玻爾的
量子論有很密切的關係,特別是玻爾的對應原理思想對海森伯有重要影響(見
對應原理)。它繼承了量子論中合理的核心(如原子的離散能級和定態、
量子躍遷、頻率條件等概念),同時又摒棄了一些沒有實驗根據的傳統概念(如粒子軌道運動的概念)。海森伯特彆強調,任何物理理論中只應出現可
觀測的
物理量(如光譜線的波長、光譜項、量子數、譜線強度等)。矩陣力學中賦予每一個物理量(如粒子的
坐標、
動量、能量等)以一個
矩陣,它們的
代數運算規則與經典物理量不同,兩個量的
乘積一般不滿足
交換律。不久薛丁格就發現
矩陣力學和
波動力學是完全
等價的。緊接著P.
狄拉克和E.約當提出一種稱為
變換理論的更普遍的形式,指出矩陣力學和波動力學只不過是量子力學規律的無限多種表述形式中的兩種。
量子力學是研究原子、分子以至
原子核和基本粒子的結構和性質的基本理論,是近代物理的基礎理論之一。20世紀前的經典物理學只適於描述一般巨觀條件下物質的運動,而對於
微觀世界(原子和
亞原子世界)和一定條件下的某些巨觀現象則只有在量子力學的基礎上才能說明。另一方面,物質屬性及其
微觀結構只有在量子力學的基礎上才能得以解釋。所有涉及物質屬性和微觀結構的問題,無不以量子力學作為理論基礎。
黑輻射量子方程
成功地解釋黑體輻射是量子化概念誕生以來的第一次牛刀小試。
當物體被加熱,以
電磁波的形式散發紅外線輻射。物體變得熾熱時,紅色波長部分開始變得可見。大多數
熱輻射是紅外線,除非物體變得像太陽的表面一樣熱,但當時的實驗室內不能夠達成這種條件而且只可以
量度部分
黑體光譜。
h是普朗克常數及
k是
玻爾茲曼常數。兩者都是物理學中的基礎。基礎能量的量子是hf。可是這個單位正常之下不存在並不需要量子化。
由 E=hv,E=mc2 聯立兩式得:
m=hv/c
2(這是
光子的相對論質量),而p=mc,則p=hv/c(p 為
動量)
量子通信
量子通信的基本思想主要由Bennett 等於20 世紀80 年代和90 年代起相繼提出, 主要包括量子密鑰分發(quantum key distribution, QKD) 和量子態隱形傳輸(quantum teleportation)。 量子密鑰分發可以建立安全的通信密碼, 通過一次一密的加密方式可以實現點對點方式的安全經典通信. 這裡的安全性是在數學上已經獲得嚴格證明的安全性, 這是經典通信迄今為止做不到的. 現有的量子密鑰分發技術可以實現百公里量級的量子密鑰分發, 輔以光開關等技術, 還可以實現量子密鑰分發網路。 量子態隱形傳輸是基於量子糾纏態的分發與量子聯合測量, 實現量子態(量子信息) 的空間轉移而又不移動量子態的物理載體, 這如同將密封信件內容從一個信封內轉移到另一個信封內而又不移動任何信息載體自身. 這在經典通信中是無法想像的事. 基於量子態隱形傳輸技術和量子存儲技術的量子中繼器可以實現任意遠距離的量子密鑰分發及網路。
量子通信的實現基於量子態傳輸. 為便於傳輸, 現有的量子通信實驗一般以光子為量子態載體, 其表現形式即為光子態傳輸. 量子信息的編碼空間以光偏振為主。