這是拉格朗日最早研究的領域,以歐拉的思路和結果為依據,但從純分析方法出發,得到更完善的結果。他的第一篇論文“極大和極小的方法研究”(Recherches sur la méthode demaximis et minimies)[2]是他研究變分法的序幕; 1760年發表的“關於確定不定積分式的極大極小的一種新方法”(Essai d'unenouvelle méthode pour déterminer les maxima et les minima desformules integrales indéfinies)[3]是用分析方法建立變分法的代表作。發表前寫信給歐拉時,稱此文中的方法為“變分方法”(themethod of variation)。歐拉肯定了,並在他自己的論文中正式將此方法命名為“變分法”(the calculus of variation)。變分法這個分支才真正建立起來。
在柏林時期,他對常微分方程的奇解和特解做出歷史性貢獻,在1774年完成的“關於微分方程特解的研究”(Sur les intégralesparticulieres des equations différentielles)[22]中系統地研究了奇解和通解的關係,明確提出由通解及其對積分常數的偏導數消去常數求出奇解的方法;還指出奇解為原方程積分曲線族的包絡線。當然,他的奇解理論還不完善,現代奇解理論的形式是由G.達布(Darboux)等人完成的。
常微分方程組的研究在當時結合天體力學中的課題進行。拉格朗日在1772年完成的“論三體問題”(Essai sur le problémedes trois corps)[8]中,找出了三體運動的常微分方程組的五個特解:三個是三體共線情況;兩個是三體保持等邊三角形;在天體力學中稱為拉格朗日平動解。他同拉普拉斯一起完善的任意常數變異法,對多體問題方程組的近似解有重大作用,促進了攝動理論的建立。
拉格朗日是一階偏微分方程理論的建立者,他在1772年完成的。“關於一階偏微分方程的積分”(Sur l'integration des équationau differences partielles du premier order)[21]和1785年完成的“一階線性偏微分方程的一般積分方法”(Méthode génèrale pourintégrer les equations partielles du premier order lorsque cesdifferences ne sont que linèaires)[23]中,系統地完成了一階偏微分方程的理論和解法。
他在代數方程解法中有歷史性貢獻。在長篇論文“關於方程的代數解法的思考”(Réflexions sur le resolution algébrique desequations,《全集》Ⅲ, pp 205—421)中,把前人解三、四次代數方程的各種解法,總結為一套標準方法,而且還分析出一般三、四次方程能用代數方法解出的原因。三次方程有一個二次輔助方程,其解為三次方程根的函式,在根的置換下只有兩個值;四次方程的輔助方程的解則在根的置換下只有三個不同值,因而輔助方程為三次方程。拉格朗日稱輔助方程的解為原方程根的預解函式(是有理函式)。他繼續尋找5次方程的預解函式,希望這個函式是低於5次的方程的解,但沒有成功。儘管如此,拉格朗日的想法已蘊含著置換群概念,而且使預解(有理)函式值不變的置換構成子群,子群的階是原置換群階的因子。因而拉格朗日是群論的先驅。他的思想為後來的N.H.阿貝爾(Abel)和E.伽羅瓦(Galois)採用並發展,終於解決了高於四次的一般方程為何不能用代數方法求解的問題。
拉格朗日到柏林初期就開始研究數論,第一篇論文“二階不定問題的解”(Sur la solution des problémès in détèrminésdu seconde degrés)[14]和送交都靈《論叢》的“一個算術問題的解”(Solution d'un problème d'arithmetique)[15]中,討論了歐拉多年從事的費馬(Fermat)方程x2-Ay2=1(x,y,A為整數),(9)
不定問題解的新方法”(Nouvelle méthode pour resoudveles problèmes indéteminés en nombres entiers)[16]中得到更一般的費馬方程 (B也為整數)(10)的解。還討論了更廣泛的二元二次整係數方程 ,(11)並解決了整數解問題。
拉格朗日還在1772年的“一個算術定理的證明”(De monstration d'un théorème d'arthmétique,《文集》Ⅲ,pp.189—201)中,把歐拉40多年沒有解決的費馬另一猜想“一個正整數能表示為最多四個平方數的和”證明出來。在1773年發表的“質數的一個新定理的證明”(Démonstation d'un theorem nouveau concernant les nombres premiers)[17]中,證明了著名的定理:n是質數的充要條件為(n-1)!+1能被n整除。
首先在建立天體運動方程上,拉格朗日用他在分析力學中的原理和(16),(17)式,建立起各類天體的運動方程。其中特別是根據他在微分方程解法的任意常數變異法,建立了以天體橢圓軌道根數為基本變數的運動方程,仍稱作拉格朗日行星運動方程,並在廣泛套用,此方程對攝動理論的建立和完善起了重大作用,方程在1780年獲巴黎科學院獎的論文“彗星在行星作用下的攝動理論研究”(Recherches sur la théorie des perturbations queles comètes peuvent éprouver par l'action des planètes)[13]中給出,得到達朗貝爾和拉普拉斯的高度評價。另外在一篇有關三體問題的獲獎文章中[8],把三體問題的運動方程組第一次降到七階。
在具體天體的運動研究中,拉格朗日也有大量重要貢獻,其中大部分是參加巴黎科學院征獎的課題。他的月球運動理論研究論文多次獲獎。1763年完成的“月球天平動研究”(Recherches sur laLibration de la lune)[6]獲1764年度獎,此文較好地解釋了月球自轉和公轉的角速度差異,但對月球赤道和軌道面的轉動規律解釋得不夠好。後來在1780年完成的論文解決得更好(參見《文集》Ⅴ,pp.5—123)。獲1772年度獎的就是著名的三體問題論文[8],也是針對月球運動研究寫出的。獲1774年度獎的論文為“關於月球運動的長期差”(Sur l’equation séculaire de la lune)[9],其中第一次討論了地球形狀和所有大行星對月球的攝動。關於行星和彗星運動的論文也有兩次獲獎。1776年度獲獎的是他在1775年完成的三篇論文[10,11,12,]其中討論了行星軌道交點和傾角的長期變化對彗星運動的影響。1780年度的獲獎論文就是提出著名的拉格朗日行星運動方程的那篇[13]。獲1766年度獎的論文是“木星的衛星運動的偏差研究……”(Recherches sur les inégualités des satellites de Jupiter…)[7],其中第一次討論了太陽引力對木星的四個衛星運動的影響,結果比達朗貝爾的更好。
1783年,老家建立“都靈科學院”,任命拉格朗日為名譽院長。原出版刊物改為《都靈科學院綜合論叢》(Mélanges des l’Acade-mie des sciences des Turin)。拉格朗日也常寄論文回去發表。到1786年8月,因支持他的普魯士國王腓特烈二世去世,決定離開柏林。他於1787年5月18日應巴黎科學院邀請動身去法國。
到巴黎的前幾年,他主要學習更廣泛的知識,如形上學、歷史、宗教、醫藥和植物學等。1789年爆發資產階級革命,他只是有興趣地旁觀。1790年5月8日的制憲大會上通過了十進位的公製法,科學院建立相應的“度量衡委員會”,拉格朗日為委員之一。8月8日,國民議會決定對科學院專政,三個月後又決定把A. L. 拉瓦錫(Lavoisier),拉普拉斯,C. A. 庫倫(Coulomb)等著名院士清除出科學院。但拉格朗日被保留,並任度量衡委員會主席。
如在《法蘭西學院文獻》(Memoires de l' Institute)中刊登的“關於任意常數變異法在所有力學問題中的一般理論”(Memoirs surla théorie génèrale de la variatiou des constantes arbitrairesdans tons les problèmes de la mécanique,1809年3月宣讀)等,都是為修改出第二版作準備。第二版更名為《分析力學》(Mé-canique analytique),分兩卷,上卷於1811年出版,下卷直到1816年才印出,拉格朗日已去世三年。
他在師範學校的教材《師範學校數學基礎教程》(Les le consélèmentaires sur les Mathématique donnés à l' cole Normale)於1796年出版,後來收進《拉格朗日文集》(Oeuvres de Lagrange,下面簡稱《文集》),第七卷的內容他在1812年做過大量充實。
1798年出版的《論任意階數值方程的解法》(Traité de la résolution des éqnations numériques de tous les degrés),總結了早年在方程式論方面的成果,並加以系統化,充實後於1808年再版。
關於函式論方面他出版了兩本歷史性著作。一是《解析函式論,含有微分學的主要定理,不用無窮小,或用在消失的量,或極限與留數等概念,而掃結為代數分析藝術》(Theorie des fonctionsanalytiques,contenant les principes du calcul diffèrentiel dégagés de toute considération d'infiniment petits, d'éranouissa-nts,de limites et de fluxions,et réduits à l'analyse algébrique de quantités finies),1797年出版,1813年再版;另一本《函式計算教程》(Lecons sur le calcul des fonctions),1801年出版,由師範學校講義改編。
拉格朗日的著作非常多,未能全部收集。他去世後,法蘭西研究院集中了他留在學院內的全部著作,編輯出版了十四卷《拉格朗日文集》,由J.A.塞雷(Serret)主編,1867年出第一卷,到1892年才印出第十四卷。第一卷收集他在都靈時期的工作,發表在《論叢》第一到第四卷中的論文;第二卷收集他發表在《論叢》第四、五卷及《都靈科學院文獻》第一、二卷中的論文;第三卷中有他在《柏林科學院文獻》(1768—1769年,1770—1773年)發表的論文; 第四卷刊有他在《柏林科學院新文獻》(1774—1779年,1781年,1783)年發表的論文;第五卷刊載上述刊物(1780—1783年,1785—1786年,1792年,1793年,1803年)發表的論文;第六卷載有他未在巴黎科學院或法蘭西研究院的刊物上發表過的文章;第七卷主要刊登他在師範學校的報告;第八卷為1808年完成的《各階數值方程的解法論述及代數方程式的幾點說明》(Traité des équations numériquesde tous les degrés, avec des notes sur plusieurs points de lathéorie des equations algébriques)一書;第九卷是1813年再版的《解析函式論,含有微分學的主要定理,不用無窮小,或正在消失的量,或極限與流數等概念,而歸結為代數分析藝術》一書;第十卷是1806年出版的《函式計算教程》一書;第十一卷是1811年出版的《分析力學》第一卷,並由J.貝特朗(Bertrand)和G.達布(Darboux)作了注釋;第十二卷為《分析力學》的第二卷,仍由上述二人注釋,此二卷書後來在巴黎重印(1965);第十三卷刊載他同達朗貝爾的學術通訊;第十四卷是他同孔多塞,拉普拉斯,歐拉等人的學術通訊,此二卷都由L.拉朗(Lalanne)作注釋。還計畫出第十五卷,包含1892年以後找到的通訊,但未出版。