基本介紹
- 中文名:拉格朗日鞍點
- 外文名:Lagrange saddle point
- 所屬學科:數學
- 所屬問題:運籌學(非線性規劃)
- 相關概念:拉格朗日函式、非線性規劃等
基本介紹,鞍點定理,相關概念,非線性規劃,拉格朗日法,
基本介紹
拉格朗日鞍點(Lagrange saddle point)是非線性規劃問題中滿足特定條件的點。對於非線性規劃問題(NP)(參見下文“非線性規劃”),它的拉格朗日函式是指目標函式和約束條件中函式的如下線性組合:





定理 設
是凸最佳化問題的KKT點,則
為對應的拉格朗日函式的鞍點,同時
也是該凸最佳化問題的全局極小點。



鞍點定理
鞍點定理(saddle point theorem)是關於拉格朗日函式的鞍點與約束最佳化問題最優點之間的關係定理。鞍點是函式平穩點的一種,套用鞍點的性質,可以推得最優點的充分條件如下:對於約束極小化問題,如果其拉格朗日函式的鞍點
存在,即有
,那么相應的
必是該約束極小化問題的最優點。由於沒有涉及函式的凸性與可微性,適用範圍較廣,但因求解鞍點很困難, 且即使原問題的最優點存在,它的拉格朗日函式也不一定有鞍點,故目前並不實用。



相關概念
非線性規劃
非線性規劃(nonlinear programming)是數學規劃的一個重要分支,它研究目標函式或約束條件中的函式有一個或多個是變數的非線性函式的數學規劃問題。其研究的問題,稱為非線性規劃問題,簡稱非線性規劃,記為(NP)。極小化形式的非線性規劃問題的數學模型為














拉格朗日法
拉格朗日法(Lagrange method)是利用拉格朗日函式,把約束非線性規劃問題轉化為無約束極小化問題求解的一種方法。對於非線性規劃問題



