《Finite Element Method》是2012年11月由作者 Dhatt, Gouri; Lefran?ois, Emmanuel; Touzot, Gilbert編寫並出版的一本圖書。
基本介紹
- 中文名:Finite Element Method
- 作者:Dhatt, Gouri; Touzot, Gilbert; Lefrancois, Emmanuel
- 出版時間:2012年10月
- 頁數:624 頁
- ISBN:9781848213685
- 定價:276.85 美元
《Finite Element Method》是2012年11月由作者 Dhatt, Gouri; Lefran?ois, Emmanuel; Touzot, Gilbert編寫並出版的一本圖書。
《Finite Element Method》是2012年11月由作者 Dhatt, Gouri; Lefran?ois, Emmanuel; Touzot, Gilbert編寫並出版的一本圖書。內容簡介 This book provides a comprehensive introduction to the finite element method; in particular, it covers approximation, standard elements, variational formulation, matrix ...
《The Finite Element Method for Engineers》是2001年出版的圖書,作者是Huebner, Kenneth H.; Dewhirst, Donald L.; Smith, Douglas E.。內容簡介 A useful balance of theory, applications, and real-world examples The Finite Element Method for Engineers, Fourth Edition presents a clear, easy-to-...
《THE FINITE ELEMENT METHOD OF LINES: Theory and Applications》是1993年科學出版社出版的圖書,作者是Si Yuan。內容簡介 Theory and Applications The finite element method of lines(FEMOL)is a newly developed semidiscrete method for analysis of engineering problems.This monograph attempts...
無格線法(meshless methods)的誕生,就是來消除有限元(finite element method)的短板 。最早的有關無格線法的文獻是由劍橋大學的L.B.Lucy和 劍橋大學的R.A.Gingold, J.J.Monaghan 分別於1977年提出。他們介紹了光滑粒子流體動力學(Smoothed particle hydrodynamics,簡稱SPH)。這兩篇著作的初衷是解決天體物理學...
有限[單]元法 有限[單]元法(finite element method)是1993年發布的力學名詞。公布時間 1993年經全國科學技術名詞審定委員會審定發布。出處 《力學名詞》第一版。
有限元線法(FEMoL:FiniteElementMethodofLines)是一種新型的以常微分方程求解器為支撐軟體的半解析數值方法·在這種方法中,首先利用有限元技術,藉助於能量泛函的變分,將控制偏微分方程半離散化為用結線函式表示的常微分方程組,然後選用高質量的ODE求解器直接求解,得到滿足用戶預先指定的誤差限的ODE解答,以此作為原...
CAE技術的主體為FEM(Finite Element Method,有限元素法)。FEM求解問題的簡單過程如下:首先將連續的求解域離散成有限個小塊 (元素) ,元素間通過有限個節點連線。在各元素內使用插值函式,用元素節點的場量來近似表示其內部任一點的場量。之後,各元素根據一定的連續條件進行總裝。再依據求解域的邊界條件,建立含...
變形後物體的形狀,通過在離散區間上對速度積分而獲得,從而避免了有限變形中的幾何非線性問題,同時可用比彈塑性有限元大的增量步長,來達到減少計算時間,提高計算效率,並能保證足夠的精度。這就是剛塑性有限元法(Rigid-Plastic Finite Element Method)。定義 在大變形的金屬成型中,彈性變形部分比起塑性變形部分很...
時空有限元方法是專門為解決時間依賴問題,特別是間斷解的一種新型、重要的有限元方法。也可以稱為流線擴散有限元方法(Streamline diffusion method,簡稱SDM)。時空有限元方法(Space-Time Finite Element Method)標準有限元方法對於時間依賴問題的解,一般僅僅進行空間解域的單元剖分,利用Runge-Kutta方法求解(空間離散型)...
Chapter 2 Finite Element Method 2.1 Introduction 2.2 Basic Equations in Elastic Plane Problems 2.3 The Finite Element Method for Elastic Plane Problems 2.4 Global Analysis 2.5 Procedures for Finite Element Analysis 2.6 Discussions of Important Topics 2.7 Examples of Application Procedures Chapter...
《工程有限元分析》是2013年北京航空航天大學出版社出版的圖書,作者是崔德渝、徐元銘。內容簡介 《工程有限元分析(英文版)》內容簡介:This textbook presents the necessary concepts, principles and general procedure of Finite Element Method (FEM) which are primarily applied for linearly elastic structural ...
混合有限元法(mixed finite element method) 結構分析中同時取節點位移向量和節點內力向量作為獨立場變數的一種有限元法。此法通過節點位移向量和內力向量表示單元內部的位移場和應力場,再套用廣義變分原理就可得到混合模型(即位移模型與應力模型的混合,或協調模型與平衡模型的混合)。混合有限元法的優點是選用插值...
3.有限元方法(Finite Element Method,簡稱FEM)。該方法也是一種數值模擬方法,它採用簡單的問題來近似複雜的問題,在有限元內取近似解逼近精確解。該方法分析的是一種近似結果,但是能解決很多的問題,在科學研究中的套用也比較廣泛。這方面的分析還有其他一些特殊的方法,主要是針對不同的結構,不同的材料二提出,...
Chapter1 Introduction-TheEvolutiveFiniteElementMethod 1 1.1 BriefReviewoftheFeaturesofFiniteElementMethod 1 1.2 FiniteElementMethodandVariationalPrinciples 3 1.3 ResearchAreasofFEM 5 1.4 AdvancesinFEMandOutlineofThisBook 6 References 9 PARTⅠ AdvancesinVariationalPrinciples Chapter2 TheSub-Region...
Chapter 1 The Structure of Finite Element Method Chapter 2 Elements and Shape Functions Chapter 3 Procedure and Performance of Computation of Finite Element Method. Chapter 4 Sobolev Space Chapter 5 The Variational Principle for Elliptic Boundary Value Problem and Error Estimate of Finite Element ...
《有限元(第3版)》是2012年世界圖書出版公司出版的圖書,作者是布拉艾斯。內容摘要 This definitive introduction to finite element methods hasbeen thoroughly updated for this third edition, which featuresimportant new material for both research and application of thefinite element method.The discussion of ...
lectures was to present a concise introduction to the basic ideas and mathematical tools in the construction and analysis of finite element methods for solving partial differential equations So that the students can start to do research on the theory and applications of the finite element method ...
第6版)》is dedicated to our wives Helen and Mary Lou and our families for their support and patience during the preparation of this book,and also to all of our students and colleagues who over the years have contributed to our knowledge of the finite element method。
Chapter 2 Finite Element and Finite Element Space Chapter 3 Interpolation Theory of Finite Elements Chapter 4 Conforming Finite Element Method Chapter 5 Nonconforming Finite Element Methods Chapter 6 Convergence of Nonconforming Finite Element Chapter 7 Quasi-Conforming Element Method Chapter 8 ...
《最小二乘有限元法的湍流大渦模擬及其並行計算》是依託同濟大學,由李啟良擔任項目負責人的青年科學基金項目。中文摘要 最小二乘有限元法(Least-squares Finite Element Method,LSFEM)在流體計算中具有廣闊的套用前景。與有限體積法相比,它具有收斂性好、通用性強,且易於獲得高階精度等優點。為此,本項目基於LS...
2.6.1FiniteDifferenceMethod 2.6.2FiniteVolumeMethod 2.6.3FiniteElementMethod 3.FiniteDifferenceMethods 3.1Introduction 3.2BasicConcept 3.3ApproximationoftheFirstDerivative 3.3.1TaylorSeriesExpansion 3.3.2PolynomialFitting 3.3.3CompactSchemes 3.3.4Non-UniformGrids 3.4ApproximationoftheSecond...
1 The standard discrete system and origins of the finite element method 1.1 Introduction 1.2 The struraal element and the structural system 1.3 Assembly and analysis of a structure 1.4 The boundary conditions 1.5 Electrical and fluid networks 1.6 The general pattern 1.7 The standard ...
離散元(discrete element method, distinct element method)是一種數值計算方法,主要用來計算大量顆粒在給定條件下如何運動。1971年Cundall提出此方法時採用distinct element method是為了和連續介質力學中的finite element method相區別。後來用discrete element method取代了distinct element method,以反映系統是離散的這一...
1.2.3 Finite element method 1.2.4 Boundary element method 1.2.5 Meshless methods 1.3 Overview of the book References Chapter 2 Fundamentals of Elasticity and Fracture Mechanics 2.1 Introduction 2.2 Basic equations of elasticity 2.3 Fracture mechanics 2.3.1 General 2.3.2 Deformation modes...
Chapter 2 Finite Element and Finite Element Space Chapter 3 Interpolation Theory of Finite Elements Chapter 4 Conforming Finite Element Method Chapter 5 Nonconforming Finite Element Methods Chapter 6 Convergence of Nonconforming Finite Element Chapter 7 Quasi-Conforming Element Method Chapter 8 ...
若參考FEM(FiniteElementMethod)計算的結果,則當d=4時,動態子結構方法已獲得較好的收斂結果。子結構的選取原則為:結構本身的形狀,一般劃分後的子結構的形狀儘量趨近於線段、矩形或立方體。顯然一個複雜結構一般要劃分更多的子結構,但本文的研究對象是等截面桿,子結構本是就是線段。要根據撞擊問題子結構法中的子...
4.1.1 Mixed finite element scheme 82 4.1.2 A priori error estimates 84 4.2 Parabolic optimal control problems 92 4.2.1 Mixed finite element discretization 92 4.2.2 Mixed method projection95 4.2.3 Intermediate error estimates 98 4.2.4 A priori error estimates 101 4.3 Hyperbolic ...