高等數學下:理工類

高等數學下:理工類

《高等數學下:理工類》是2011年安徽大學出版社出版的圖書。

基本介紹

  • 書名:高等數學下:理工類
  • 作者:杜先能,孫國正主編
  • 類別:高等數學教材
  • 出版社:安徽大學出版社
  • 出版時間:2011年8月1日
  • 開本:16 開
  • 裝幀:平裝
  • ISBN:9787566403001
內容簡介,圖書目錄,

內容簡介

微積分是理工科非數學專業重要的一門基礎課,對培養面向2l世紀的複合型套用人才起著至關重要的作用。為此,我們根據全國高等學校理工科《高等數學教學大綱》,參照2003、2004年《全國碩士研究生入學統一考試數學考試大綱》,在安徽大學原自編系列教材《高等數學》(安徽大學出版社,1999年版)的基礎上,集中省內多所高校長期從事高等數學教學,具有豐富教學經驗的老師,本著推陳出新、銳意改革的宗旨,編寫了這套微積分教材。這本《高等數學(下理工類)》由杜先能和孫國正主編,是《高等數學》體系中微積分部分的下冊,是數學理論的基礎。

圖書目錄

第9章 空間解析幾何
 9.1 空間直角坐標系
 9.2 向量代數
 9.3 空間的平面與直線
 9.4 幾種常見的二次曲面
 第9章綜合練習題
第10章 多元函式微分學
 10.1 多元函式的基本概念
 10.2 偏導數與全微分
 10.3 多元複合函式微分法
 10.4 隱函式求導法則
 10.5 偏導數在幾何上的套用
 10.6 多元函式的泰勒公式
 10.7 多元函式的極值
 第10章綜合練習題
第11章 重積分
 11.1 二重積分的概念與性質
 11.2 二重積分的計算
 11.3 三重積分
 11.4 重積分的套用
 第11章綜合練習題
第12章 曲線積分與曲面積分
 12.1 類曲線積分
 12.2 第二類曲線積分
 12.3 Green公式
 12.4 類曲面積分
 12.5 第二類曲面積分
 12.6 Gauss公式
 12.7 Stokes公式
 12.8 場論初步
 第12章綜合練習題
第13章 無窮級數
 13.1 數項級數的概念與性質
 13.2 數項級數的收斂判別法
 13.3 冪級數
 13.4 Fourier級數
 第13章綜合練習題
附錄1 二階和三階行列式簡介
附錄2 習題及綜合練習題參考答案

相關詞條

熱門詞條

聯絡我們