基本內容,靜電學,靜磁學,電磁場,電路,電磁效應,電磁測量,綜合發展,物理學,發展史,琥珀和磁石,磁和靜電,套用發展,有線通信,無線通信,國中電路知識,電路,電流,電壓,電阻,歐姆定律,電功和電功率,生活用電,電和磁,電動機原理,
基本內容
靜電學
是研究靜止電荷產生
電場及電場對電荷作用規律的學科。電荷只有兩種,稱為
正電和負電。同種電荷相互排斥,異種電荷相互吸引。電荷遵從
電荷守恆定律。電荷可以從一個物體轉移到另一個物體,任何物理過程中電荷的代數和保持不變。所謂帶電,不過是正負電荷的分離或轉移;所謂電荷消失,不過是正負電荷的中和。
靜止電荷之間
相互作用力符合
庫侖定律:在
真空中兩個靜止
點電荷之間作用力的大小與它們的電荷量的乘積成正比,與它們之間的距離的平方成反比;作用力的方向沿著它們之間的聯線,同號電荷相斥,異號電荷相吸。
通常的物質,按其導電性能的不同可分兩種情況:
導體和
絕緣體。導體體記憶體在可運動的
自由電荷;絕緣體又稱為電介質,體內只有束縛電荷。
在電場的作用下,導體內的自由電荷將產生移動。當導體的成分和溫度均勻時,達到靜電
平衡的條件是導體內部的電場強度處處等於零。根據這一條件,可導出導體
靜電平衡的若干性質。
靜磁學
是研究電流穩恆時產生磁場以及磁場對電流
作用力的學科。
電荷的定向流動形成電流。電流之間存在磁的相互作用,這種磁相互作用是通過磁場傳遞的,即電流在其周圍的空間產生磁場,
磁場對放置其中的電流施以作用力。電流產生的磁場用
磁感應強度描述。
電磁場
麥克斯韋
方程組描述了電磁場普遍遵從的規律。它同物質的介質方程、洛侖茲力公式以及
電荷守恆定律結合起來,原則上可以解決各種巨觀電動力學問題。
根據
麥克斯韋方程組導出的一個重要結果是存在
電磁波,變化的電磁場以電磁波的形式傳播,電磁波在真空中的傳播速度等於
光速。這也說明光也是電磁波的一種,因此光的波動理論納入了電磁理論的範疇。
電路
直流電路由導體(或導線)連結而成,導體有一定的電阻。穩恆條件下電流不隨時間變化,電場亦不隨時間變化。
根據穩恆時電場的性質、導電基本規律和電動勢概念,可導出直流電路的各個實用定律:
歐姆定律、
基爾霍夫電路定律,以及一些解決複雜電路的有效而簡便的定理:
等效電源定理、疊加定理、倒易定理、
對偶定理等,這些實用定律和定理構成電路計算的理論基礎。
電磁效應
物質中的電效應是電學與其他物理學科(甚至非物理的學科)之間聯繫的紐帶。物質中的電效應種類繁多,有許多已成為或正逐漸發展為專門的研究領域。比如:
電致伸縮、
壓電效應(機械
壓力在電介質晶體上產生的電性和電極性)和
逆壓電效應、
塞貝克效應、
珀耳帖效應(兩種不同金屬或半導體接頭處,當電流沿某個方向通過時放出熱量,而電流反向時則吸收熱量)、湯姆孫效應(一金屬導體或半導體中維持溫度梯度,當電流沿某方向通過時放出熱量,而電流反向時則吸收熱量)、
熱敏電阻(
半導體材料中電阻隨溫度靈敏變化)、光敏電阻(半導體材料中電阻隨光照靈敏變化)、
光生伏打效應(半導體材料因光照產生
電位差),等等。
對於各種電效應的研究有助於了解物質的結構以及物質中發生的基本過程,此外在技術上,它們也是實現能量轉換和非
電量電測法的基礎。
電磁測量
也是電學的組成部分。測量技術的發展與學科的理論發展有著密切的聯繫,理論的發展推動了測量技術的改進;測量技術的改善在新的基礎上驗證理論,並促成新理論的發現。
電磁測量包括所有
電磁學量的測量,以及有關的其他量(交流電的頻率、相角等)的測量。利用電磁學原理已經設計製作出各種專用儀表(安培計,伏特計、
歐姆計、磁場計等)和測量電路,它們可滿足對各種電磁學量的測量。
電磁測量的另一個重要的方面是非電量(長度、速度、
形變、力、溫度、
光強、
成分等)的電測量。它的主要原理是利用電磁量與非電量相互聯繫的某種效應,將非電量的測量轉換為電磁量的測量。由於電測量有一系列優點:
準確度高、量程寬、慣量小、操作簡便,並可遠距離遙測和實現測量技術自動化,非電量的電測量正在不斷發展。
綜合發展
電學作為
經典物理學的一個分支,就其基本原理而言,已發展得相當完善,它可用來說明巨觀領域內的各種電磁現象。
20世紀,隨著
原子物理學、
原子核物理學和
粒子物理學的發展,人類的認識深入到微觀領域,在帶電粒子與電磁場的相互作用問題上,經典
電磁理論遇到困難。雖然經典理論曾給出一些有用的結果,但是許多現象都是經典理論不能說明的。經典理論的局限性在於對帶電粒子的描述忽略了其波動性方面,而對於電磁波的描述又忽略了其
粒子性方面。
按照
量子物理的觀點,無論是物質粒子或
電磁場都既有粒子性,又具有波動性。在
微觀物理研究的推動下,經典電磁理論發展為量子電磁理論。
物理學
發展史
琥珀和磁石
古
希臘七賢中有一位名叫
泰勒斯的哲學家。公元前600年前後,泰勒斯看到當時的希臘人通過摩擦琥珀吸引羽毛,用磁錢礦石吸引鐵片的現象,曾對其原因進行過一番思考。據說他的解釋是:“萬物皆有靈。磁吸鐵,故磁有靈。”這裡所說的“磁”就是
磁鐵礦石。希臘人把琥珀叫做“elektron”(與英文“電”同音)。
在東方,據《
呂氏春秋》一書記載,中國在戰國時期已利用磁石製成
指南針,他們在古代用指南針的磁針來辨別方向了。
磁和靜電
1. 磁和靜電
通常所說的
摩擦起電,在公元前人們只知道它是一種現象。很長時間裡,關於這一種現象的認識並沒有進展。
而羅盤則在13世經就已經在航海中得到了套用。那時的羅盤是把加工成針形的磁鐵礦石放在秸稈里,使之能浮在水面上。到了14世紀初,又製成了用繩子把
磁針吊起來的航海羅盤。
這種
羅盤在1492年
哥倫布發現美洲新大陸以及1519年
麥哲倫發現環繞地球一周的航線時發揮了重要的作用。
2.雷和靜電
在公元前的中國,打雷被認為是神的行為。說是有五位司
雷電的神仙,其長者稱為雷祖,雷祖之下是雷公和電母。打雷就是雷公在天上敲大鼓,閃電就是電母用兩面鏡子把光射向下界。
到了
亞里斯多德時代就已經比較科學了。認為雷的發生是由於大地上的水蒸氣上升,形成
雷雨雲,雷雨雲遇到冷空氣凝縮而變成雷雨,同時伴隨出現強光。
認為雷是靜電而產生的是英國人沃爾,那是1708年的事。1748年,富蘭克林基於同樣的認識設計了
避雷針。
電學的真正開始
1600年,英國物理學家吉伯發現,不僅琥珀和煤玉摩擦後能吸引輕小物體,而且相當多的物質經摩擦後也都具有吸引輕小物體的性質,他注意到這些物質經摩擦後並不具備磁石那種指南北的性質。為了表明與磁性的不同,他採用琥珀的希臘字母拼音把這種性質稱為“電的”。吉伯在實驗過程中製作了第一隻
驗電器,這是一根中心固定可轉動的金屬細棒,當與摩擦過的琥珀靠近時,金屬細棒可轉動指向琥珀。
大約在1660年,德國馬德堡的蓋利克發明了第一台摩擦起電機。他用硫磺製成形如地球儀的可轉動球體,用乾燥的手掌摩擦轉動球體,使之獲得電。蓋利克的摩擦起電機經過不斷改進,在
靜電實驗研究中起著重要的作用,直到19世紀霍耳茨和推普勒分別發明感應起電機後才被取代。
18世紀電的研究迅速發展起來。1729年,英國的格雷在研究琥珀的電效應是否可傳遞給其他物體時發現導體和絕緣體的區別:金屬可導電,絲綢不導電,並且他第一次使人體帶電。格雷的實驗引起法國迪費的注意。1733年迪費發現絕緣起來的金屬也可摩擦起電,因此他得出所有物體都可摩擦起電的結論。他把玻璃上產生的電叫做“玻璃的”,琥珀上產生的電與樹脂產生的相同,叫做“樹脂的”。他得到:帶相同電的物體互相排斥;帶不同電的物體彼此吸引。
1745年,荷蘭萊頓的穆申布魯克發明了能保存電的萊頓瓶。
萊頓瓶的發明為電的進一步研究提供了條件,它對於電知識的傳播起到了重要的作用。
差不多同時,美國的富蘭克林做了許多有意義的工作,使得人們對電的認識更加豐富。1747年他根據實驗提出:在正常條件下電是以一定的量存在於所有物質中的一種元素;電跟流體一樣,摩擦的作用可以使它從一物體轉移到另一物體,但不能創造;任何孤立物體的電總量是不變的,這就是通常所說的
電荷守恆定律。他把摩擦時物體獲得的電的多餘部分叫做帶正電,物體失去電而不足的部分叫做帶負電。
嚴格地說,這種關於電的一元流體理論在今天看來並不正確,但他所使用的正電和負電的術語至今仍被採用,他還觀察到導體的尖端更易於放電等。早在1749年,他就注意到雷閃與放電有許多相同之處,1752年他通過在雷雨天氣將風箏放入雲層,來進行雷擊實驗,證明了雷閃就是放電現象。在這個實驗中最幸運的是
富蘭克林居然沒有被電死,因為這是一個危險的實驗,後來有人重複這種實驗時遭電擊身亡。富蘭克林還建議用避雷針來防護建築物免遭雷擊,1745年首先由狄維斯實現,這大概是電的第一個實際套用。
富蘭克林聯想到往萊頓瓶里蓄電的事,於1752年6月做了一個把風箏放到雷雨雲里去的實驗。其結果,發現了雷雨雲有時帶正電有時帶負電的現象。這個風箏實驗很有名,許多科學家都很感興趣,也跟著做。1753年7月,俄羅斯科學家利赫曼在實驗中不幸遭電擊身亡。
通過用各種金屬進行實驗,義大利帕維亞大學教授伏打證明了鋅,鉛,錫,鐵,銅,銀,金,石墨是個金屬電壓系列,當這個系列中的兩種金屬相互接觸時,系列中排在前面的金屬帶
正電,排在後面的金屬帶負電。他把銅和鋅做為兩個電極置於稀硫酸中,從而發明了伏打電池。電壓的單位“伏特”就是以他的名字命名的。
19世紀初,正是法國大革命後進入拿破崙時代。拿破崙從義大利歸來,在1801年把伏打召到巴黎,讓他做電實驗,伏打也因此獲得了拿破崙授予的金質獎章和萊吉諾-多諾爾勳章。
伏打電池發明之後,各國利用這種電池進行了各種各樣的實驗和研究。德國進行了電解水的研究,英國化學家戴維把2000個伏打電池連在一起,進行了
電弧放電實驗。戴維的實驗是在正負電極上安裝木炭,通過調整電極間距離使之產生放電而發出強光,這就是電用於照明的開始。
1820年,丹麥
哥本哈根大學教授奧斯特在一篇論文中公布了他的一個發現:在與伏打電池連線了的導線旁邊放一個磁針,磁針馬上就發生偏轉。
俄羅斯的西林格讀了這篇論文,他把線圈和
磁針組合在一起,發明了
電報機(1831年),這可說是電報的開始。
另一方面,關於電路的研究也在發展。歐姆發現了關於電阻的
歐姆定律(1826年),
基爾霍夫發現了關於電路網路的定律(1849年),從而確立了電工學。
套用發展
有線通信
有線通信的歷史
有人說科學技術是由於軍事方面的需要而發展起來的,這種說法有一定的歷史事實根據。
英國害怕拿破崙進攻,曾用桁架式通信機向自己的部隊進報法國軍隊的動向。瑞典,德國,俄羅斯等國家也以軍事為目的,架設了由這類通信機組成的通信網,據說都曾投入了龐大的預算。
將這種通信機改造成電通信方式的構想大概就是有線通信的開始。
1. 有線通信的原理
除了將前面所講到的西林所發明的電磁式電報機以外,還有德國的簡梅林發明的
電化學式電報機,
高斯和
韋伯(德國)的電報機,庫克和惠斯能(英國)的5針式電報機等。電報機的形式也是各種各樣的,有音響式,印刷式,指針式,鐘鈴式等。其中,庫克和惠斯通的5針式電報機最為有名。1837年,這種電報機曾通過架設在倫敦與西德雷頓之間長達20公里的5根電線而投入實際使用。
2.莫爾斯電報機
1837年,莫爾斯電報機在美國研製成功,發明人就是以莫爾斯
電碼而聞名的莫爾斯。莫爾斯電碼是一種以點,劃來編碼的信號。
莫爾斯本來是想當一名畫家,他為此在倫敦留學。1815年,他在回美國的船上聽了波士頓大學教授傑克遜關於電報的一席談話,萌發了莫爾斯電碼和電報機的構想。為了鋪設電報線,莫爾斯成立了電磁-電報公司,並於1846年在紐約-波士頓,費城-匹茲堡,多倫多-布法羅-紐約之間開通了電報業務。
莫爾斯的事業獲得了極大成功,於是就在美國各地創辦電報公司,電報業務逐漸擴大起來。
1846年,莫爾斯電報機裝上了音響收報機,使用也更加方便。
1876年2月14日,美國的兩位發明家貝爾和格雷分別遞交了電話機專利的申請,貝爾的申請書比格雷的申請書早兩個小時到達,因而貝爾得到了專利權。
1878年,貝爾成立了電話公司,製造電話機,全力發展電話事業。
從發展電話業務開始,交換機就擔負著重要的任務。1877年前後的交換機稱為傳票式交換機,話務員收到通話請求,很把傳票交給另一位話務員。
其後,經過反覆改進,開發出了框圖式交換機,進而又開發出了自動交換方式(1879年)。
1891年,史端喬式自動交換機研製成功。至此,自動交換的願望就算實現了。之後研究仍在繼續,又經過了幾個階段才達到如今市面上的電子交換機。
4. 海底通信電纜
陸上通信網日漸完備,人們開始考慮在海底敷設通信電纜來實現跨海國家之間的通信。1840年前後,惠斯通就已經考慮到了海底電纜的問題。
海底電纜有很多問題需要解決,電纜的機械強度,絕緣及敷設方法都陸上電纜不同。
1845年,英吉利海峽海底電報公司成立,開始了從英國到加拿大並跨過多佛爾海峽到達法國的海底電纜敷設工程。
海底電纜敷設中碰到了電纜斷裂等大難題,但敷設誨底電纜是時代的要求,各國都為此投稿了力量。
1851年,最早的加來-多佛爾海底電纜敷設完畢,成功地實現了通信。以此為契機,歐洲周邊和美洲東部周邊也敷設了許多電纜。
如今,世界上的大海里遍布著電纜,供通信使用。
無線通信
無線通信的歷史
世界上任何一個地區的信息都能顯示在電視機上,這種方便是電波帶給我們的。
最早的
電波實驗是德國的
赫茲在1888年進行的。通過實驗,赫茲弄清了電波和光一樣,具有直線傳播,反射和
折射現象。
頻率的單位赫茲就是來自他的名字。
在雜誌上讀到過
赫茲實驗文章的義大利人馬可尼,在1895年研製出了最早的無線電裝置,利用這一裝置在相隔大約3公里遠的距離之間進行了莫爾斯
電碼通信實驗。他想到了要把無線通信企業化,就成立了一個無線電報與信號公司。
儘管馬可尼在無線通信領域獲得了諸多成功,但由於與海底電纜公司的利益相衝突,他想在紐芬蘭設立無線電報局的事遭到了反對,馬可尼的反對者還不在少數。
2.高頻波的產生
達德爾採用由線圈和電容器構成的電路產生出了高頻信號,但頻率還不到50KHZ,電流也只有2~3A,比較小。
1903年,荷蘭的包魯森利用
酒精蒸氣
電弧放電產生出了1MHZ的高頻波,彼得森又對其進行了改進,製成了輸出功率達到1KW的裝置。
其後,德國設計出了機械式高頻發生裝置,美國的斯特拉和費森登,德國的戈爾德施米特等人開發出了用高頻交流機產生高頻波的方法等,很多科學家和工程師都曾致力於高頻波發生器的研究。
3.無線電話
如果傳送的不是莫爾斯信號而是人的語言,那就需要有運載有信號的載波。載波必須是高頻波。
1906年,美國通用電氣(GE)公司的亞歷山德森製成了80KHZ的高頻信號發生裝置,首次成功地進行了無線電話的實驗。
用無線電話傳送語音,並且要收聽它,這就需要有用於傳送的高頻信號發生裝置和用於接收的檢波器。費森登設計了一種多差式接收裝置,並於1913年試驗成功。
達德爾設計出了以包魯森電弧傳送器為傳送裝置,以電解檢波器為接收裝置的受話器方式。在當時,由於都是採用火花
振盪器,所以噪聲很大,實驗階段可說是成功了,但離實用化還很遠。
要想使產生的電波穩定,接收到的噪聲小,還得等待
電子管的出現。
4.二極體和三極體
1903年,愛迪生髮現從電燈泡的熱絲上飛濺出來的電子把燈泡的一部分都燻黑了,這種現象被稱為
愛迪生效應。
1904年,弗萊明從愛迪生效應得到啟發,造出
二極體,用它來進行檢波。
1907年,美國的D。福雷斯特在二極體的
陽極和
陰極之間又加了一個叫做柵極的電極,發明了
三極體。
這種三極體既可以用於放大信號電壓,也可以配以適當的反饋電路產生穩定的高頻信號,可說是一個劃時代的電路元件。
三極體經過進一步的改進,能夠產生短波,超短波等高頻信號。此外,三極體具有能控制電子流的功能,隨後出現的陰極射線管和
示波器與此有密切的關係。
5.電池的歷史
1790年,伽伐尼根據解剖青蛙實驗提出了“動物電”,以此為開端,伏打發現了兩種金屬接觸就有電產生的規律,可以說這就是電池的起源。
1799年,伏打在銅和鋅之間夾入一層浸透鹽水的紙,再把它們一層一層地迭起來,製成了“
伏打電堆”。“電堆”的意思就是指把許多單個電池單元高高地堆在一起。
(1)一次電池
一次電池放完電後不能再用的電池稱為一次電池。伏打對伏電電堆做了改進,製成了伏打電池。
1836年,英國人丹尼爾在陶瓷桶里放入陽極和氧化劑,製成了丹尼爾電池。與伏打電池相比,丹尼爾電池能長時間提供電流。
1868年,法國的勒克朗謝公布了勒克朗謝電池,1885年(明治18年)日本的尾井先藏發明了尾井乾電池。尾井乾電池是一種把電解液吸附在海綿里的特殊電池,具有搬運方便的特點。
1917年,法國的費里發明了空氣電池,1940年,美國的魯賓發明了
水銀電池。
(2)二次電池
放完電還可以充電再用的電池稱為二次電池。1859年,法國的普朗泰發明了能夠反覆充電使用的鉛蓄電池,其結構是稀硫酸中裝有鉛電極,這是最早的二次電池。如今,汽車裡使用的就是這種類型的電池。
1897年(明治30年),日本的島津源藏開發出了具有10A*H容量的鉛蓄電池,並把他本人名字GENZO SIMAZU的字頭GS作為商品名稱,取名為GS電池投放市場。
1899年,瑞典的容納製成了容納電池,1905年愛迪生製成了愛迪生電池。這些電池的電解液都用的是
氫氧化鉀,後來就被稱為鹼性電池。
1948年,美國的紐曼發明了鎳鎘電池。這是一種能充電的乾電池,是具有劃時代意義的電池。
1939年,英國人格羅夫發現氧和氫的反應中有
電能產生,並由實驗證明了
燃料電池的可能性。也就是說,電解水的時候消耗了電能而生成了氧和氫,反過來,從外部給陽極一側送入氧,給陰極一側送入氫,就能夠產生電能和水。
格羅夫當時只是做了實驗,並未實用化。1958年,劍橋大學(英國)製成了5KW的燃料電池。
1965年,美國GE公司成功地開發出了燃料電池,這個電池就安裝在1965年的載人飛船雙子星5號上,用於供給太空人飲用水的飛船電能。1969年登上月球的阿波羅11號飛船上的電源也使用了燃料電池作為飛船內電源。
1873年,德國人西門子發明了用硒和鉑絲製成的
光電池。新型照相機曝光表上所用的就是這種硒光電池。
1945年,美國的夏品發明了
矽太陽能電池,這是一種當太陽光或燈光照到其PN結上時能產生電能的元件,廣泛用於人造衛星,太陽能汽車,鐘錶,台式
計算器等。提高這種元件轉換效率的研究與開發工作仍在進行中。
6.照明的歷史
18世紀60年代由英國興起的產業革命使工廠進入了連續加工,批量生產的時代,夜間照明成了重要問題。
前面已經講過,英國人戴維1815年曾做過用2000個伏打電池產生電弧的有名實驗。
(1)白熾燈泡
1860年,英國人斯旺把棉線碳化後做成燈絲裝入玻璃泡里,發明了碳絲燈泡。
然而,由於當時的
真空技術不高,點燈時間不能過長,時間一長,燈絲就會在燈泡里氧化而燒掉。
斯旺所想到的白熾燈泡的原理是如今市面上的白熾燈的起源。隨著燈絲研究和真空技術的進步,白熾燈最終達到了實用化。從這點不說,斯旺的發明是一項大發明。
1865年,施普倫格爾為研究真空現象而開發出水銀真空泵。斯旺知道這件事後,就在1878年把玻殼內的
真空度提高,又在燈絲上下了一番功夫。他先把棉線用硫酸處理,然後再碳化,最後,他公布了斯旺燈泡。斯旺的白熾燈泡曾在巴黎萬國博覽會上展出。
1879年,美國的愛迪生成功地把白熾燈泡的壽命延長到了40小時以上。1880年,愛迪生髮現竹子是做白熾燈燈絲的優良材料,就把日本,中國,印度的竹子收集起來反覆進行實驗。
愛迪生把部下穆爾派到日本,在京都的八幡尋找優質竹子,若干年後,用八幡竹子製造出了燈絲。為了製造這種竹燈絲的燈泡,1882年他在倫敦和紐約成立了愛迪生電燈公司。
在日本,1886年(明治19年)東京電燈公司成立,明治22年起,一般的家庭開始用上了白治燈泡。
1910年,美國的庫利廳用鎢絲做燈絲,發明了鎢絲燈泡。
1913年,美國的蘭米爾在玻殼裡充入氣體以防止燈絲蒸發,發明了充氣鎢絲燈泡。
1925年,日本的不破橘三發明了內壁磨砂燈泡。
1932年,日本的三浦順一發明了雙螺旋鎢絲燈泡。
正是由於上述的不斷探索,今天我們才能享受白熾燈照明的日常生活,想起來真是漫漫長路啊。
(2)放電燈
1902年,美國的休伊茲特在玻殼內裝入水銀蒸氣,發明了
弧光放電汞燈。由於這種汞燈在汞蒸氣的氣壓較低時發出了紫外線較多,所以常作為殺菌燈使用。而當水銀氣壓較高時,可發出很強的
可見光。
現廣泛用於廣場照明和道路照明的高壓汞燈所發出的光是一種混合光,混合光包括水銀電弧放電的光和紫外線照到塗敷在玻殼內壁的螢光材料上所發出的光。
1932年,荷蘭菲利浦公司開發出了波長為590nm單色的鈉燈,這種燈廣泛用於公路的隧道照明。
1938年,美國的英曼發明了當年廣泛使用的螢光燈。這種燈通過用水銀電弧放電發出的紫外線照射塗敷在燈管內壁的不同
螢光粉而發出不同顏色的光。通常,白色螢光燈用得最多。
7.電力設備的歷史
可以說,1820年奧斯特所發現的電磁作用就是電動機的起源。
而1831年法拉第所發現的電磁感應就是發電機的變壓器的起源。
1832年,法國人畢克西發明了手搖式
直流發電機,其原理是通過
轉動永磁體使
磁通發生變化而線上圈中產生感應電動勢,並把這種電動勢以直流電壓形式輸出。
1866年,德國的西門子發明了自勵式直流發電機。
1869年,比利時的格拉姆製成了環形電樞,發明了環形電樞發電機。這種發電機是用水力來轉動發電機轉子的,經過反覆改進,於1847年得到了3。2KW的
輸出功率。
1882年,美國的戈登製造出了輸出功率447KW,高3米,重22噸的兩相式巨型發電機。
美國的特斯拉在愛迪生公司的時候就決心開發交流電機,但由於愛迪生堅持只搞直流方式,因此他就把兩相交流發電機和電動機的專利權賣給了西屋公司。
1896年,特斯拉的兩相交流發電機在尼亞拉發電廠開始勞動營運,3750KW,5000V的交流電一直送到40公里外的布法羅市。
1889年,西屋公司在俄勒岡州建設了發電廠,1892年成功地將15000伏電壓送到了皮茨菲爾德。
1834年,俄羅斯的雅可比試製出了由
電磁鐵構成的直流電動機。1838年,這種電動機開動了一艘船,電動機電源用了320個電池。此外,美國的文波特和英國的戴比德遜也造出了直流電動機(1836年),用作印刷機的動力設備。由於這些電動機都以電池作為電源,所以未能廣泛普及。
1887年,前面所講過的特斯拉兩相電動機作為實用化感應電動機的發展計畫開始啟動。1897年,西屋公司製成了感應電動機,設立專業公司致力於電動機的普及。
發電端在向外輸送交流電的時候,要先把交流電壓升高,到了用電端,又得把送來的交流電壓降低。因此,變壓器是必不可少的。
1831年,法拉第發現磁可以感應生成電,這就是變壓器誕生的基礎。
1882年,英國的吉布斯獲得了“照明與動力用配電方式”專利,其內容就是將變壓器用於配電,當時所用的變壓器是
磁路開放式變壓器。
西屋引進了吉布斯的變壓器,經過研究,於1885年開發出了實用的變壓器。
此外,在此前一年的1884年,英國的霍普金森製成了閉合磁路式變壓器。
(4)電力設備和三相交流技術
兩相交流電是用四根電線輸電的技術。德國的多勃羅沃爾斯基在繞組上想出了竅門,從繞組上每隔120度的三個地方引出抽頭,得到了三相交流電。1889年,利用這種三相交流電的
旋轉磁場,製成了功率為100W的最早的三相交流電動機。
同年,多勃羅沃爾斯基又開發出了三相四線制交流接線方式,並在1891年的法蘭克福輸電實驗(150VA三相變壓器)中獲得了圓滿成功。
8.電子電路元器件的歷史
當代,是包括計算機在內的
電子學繁榮昌盛的時代,其背景與電子電路元器件由電子管-電晶體=
積體電路的不斷發展有著密切的關係。
電子管是沿著二極體-三極體-四極管-
五極管的順序發明出來的。
二極體:前面曾經講過,愛迪生髮現了電燈泡燈絲髮射電子的“
愛迪生效應”。1904年,英國人弗萊明受到“愛迪生效應”的啟發,發明了二極體。
三極體:1907年,美國的福雷斯特發明了三極體。當時,真空技術尚不成熟,三極體的製造水平也不高。但在反覆改進的過程中,人們懂得了三極體具有放大作用,終於拉開了電子學的帷幕。
振盪器也從上面所講過的馬可尼火花裝置發展為三極體振盪器。三極體有三個電極,
陽極,
陰極和設定在二者之間的控制柵極,這個控制柵極是用來控制陰極所發射的電子流的。
四極管:1915年,英國的朗德在三極體的控制柵極與陽極之間又加了一個電極,稱為簾柵極,其作用是解決三極體中流向陽極的電子流中有一部分會流到控制柵極上去的問題。
五極管:1927年,德國的約布斯特在陽極與簾柵極之間又加了一個電極,發明了五極管。新加的電極被稱為抑制柵。加入這個電極的原因是:在四極管中,電子流撞到
陽極上時陽極會產生
二次電子發射,抑制柵就是為抑制這種二次電子發射而設定的。
此外,1934年美國的湯綠森通過對電子管進行小型化改進,發明了適用於超短波的橡實管。
管殼不用玻璃而採用金屬的ST管發明於1937年,經小型化後的MT管發明於1939年。
半導體器件大致分為電晶體和積體電路(IC)兩大部分。第二次世界大戰後,由於半導體技術的進步,電子學得到了令人矚目的發展。
電晶體是美國貝爾實驗室的肖克萊,巴丁,布拉特在1948年發明的。
這種電晶體的結構是使兩根金屬絲與低摻雜
鍺半導體表面接觸,稱為接觸型電晶體。
1949年,開發出了結型電晶體,在實用化方面前進了一大步。
1956年開發出了製造P型和N型半導體的
擴散法。它是在高溫下將雜質原子滲透到半導體表層的一種方法。1960年開發出了
外延生長法並製成了外延平面型電晶體。外延生長法是把矽晶體放在氫氣和
鹵化物氣體中來製造半導體的一種方法。
有了半導體技術的這些發展,隨之就誕生了積體電路。
大約在1956年,英國的達馬就從電晶體原理預想到了積體電路的出現。
1958年美國提出了用半導體製造全部電路元器件,實現積體電路化的方案。
1961年,德克薩斯儀器公司開始批量生產積體電路。
積體電路並不是用一個一個電路元器件連線成的電路,而是把具有某種功能的電路“埋”在半導體晶體裡的一個器件。它易於小型化和減少引線端,所以具有可靠性高的優點。
積體電路的集成度在逐年增加。元件數在100個以下的小規模積體電路,100~1000個的中規模積體電路,1000~100000個大規模積體電路,以及100000個以上的超大規模積體電路,都已依次開發出來,並在各種裝置中獲得了廣泛套用。
國中電路知識
電路
絕緣體:不容易導電的物體叫絕緣體。
電路有三種狀態:(1)通路:接通的電路叫通路;(2)
開路:斷開的電路叫開路,也叫斷路;(3)短路:直接把導線接在電源兩極上的電路叫短路。
串聯:把
元件逐個順序連線起來,叫串聯。(任意處斷開,電流都會消失)
並聯:把元件並列地連線起來,叫並聯.(各個支路是互不影響的)
電流
國際單位:安培(A);常用:毫安(mA),微安( μA),1安培=1 000毫安=1 000 000微安。
測量電流的儀表是:
電流表,它的使用規則是:①電流表要串聯在電路中;②電流要從"+"接線柱入,從"-"接線柱出;③被測電流不要超過電流表的量程;④絕對不允許不經過用電器而把電流表連到電源的兩極上。
電壓
國際單位:伏特(V);常用:千伏(KV),毫伏(mV).1千伏=1 000伏=1000 000毫伏。
測量電壓的儀表是:電壓表,使用規則:①電壓表要並聯在電路中;②電流要從"+"接線柱入,從"-"接線柱出;③被測電壓不要超過電壓表的量程;
熟記的電壓值:①1節乾電池的電壓1.5伏;②1節鉛蓄電池電壓是2伏;③家庭照明電壓為220伏;④安全電壓是:不高於36伏;⑤工業電壓380伏。
電阻
電阻(R):表示導體對電流的
阻礙作用。(導體如果對電流的阻礙作用越大,那么電阻就越大,而通過導體的電流就越小).
國際單位:歐姆(Ω);常用:兆歐(MΩ),千歐(KΩ);1兆歐=1000千歐;
1千歐=1000歐。
決定電阻大小的因素:材料,長度,
橫截面積和溫度(R與它的U和I無關).
作用:通過改變接入電路中的電阻來改變電路中的電流和電壓。
銘牌:如一個滑動變阻器標有"50Ω 2A"表示的意義是:最大阻值是50Ω,允許通過的最大電流是2A.
正確使用:a,應串聯在電路中使用;b,接線要"一上一下";c,通電前應把阻值調至最大的地方。
歐姆定律
歐姆定律:
導體中的電流,跟導體兩端的電壓成正比,跟導體的電阻成反比。
公式:
式中單位:
→安(A);
→伏(V);
→歐(Ω).
公式的理解:①公式中的
,
和
必須是在同一段電路中;②
,
和
中已知任意的兩個量就可求另一個量;③計算時單位要統一。
歐姆定律的套用:
①同一電阻的阻值不變,與電流和電壓無關,其電流隨電壓增大而增大。(
)
②當電壓不變時,電阻越大,則通過的電流就越小。(
)
③當電流一定時,電阻越大,則電阻兩端的電壓就越大.(
)
電阻的串聯有以下幾個特點:(指
,
串聯,串得越多,電阻越大)
③電阻:
(總電阻等於各電阻之和)如果n個等值電阻串聯,則有R總=nR
電阻的並聯有以下幾個特點:(指R1,R2並聯,並得越多,電阻越小)
①電流:I=I1+I2(幹路電流等於各支路電流之和)
②電壓:U=U1=U2(幹路電壓等於各支路電壓)
③電阻:(總電阻的倒數等於各電阻的倒數和) 1/R總=1/R1+1/R2+1/R3+....+1/Rn
④分流作用:;計算I1,I2可用:;
⑤比例關係:電壓:U1:U2=1:1,(Q是熱量)
電功和電功率
1.
電功(W):電能轉化成其他形式能的多少叫電功,
2.功的國際單位:
焦耳.常用:度(
千瓦時),1度=1千瓦時=3.6×10^6焦耳。
4.電功公式:W=Pt=UIt(式中單位W→焦(J);U→伏(V);I→安(A);t→秒).
利用W=UIt計算時注意:①式中的W.U.I和t是在同一段電路;②計算時單位要統一;③已知任意的三個量都可以求出第四個量。還有公式:=I2Rt
公式:式中單位P→瓦(w);W→焦;t→秒;U→伏(V),I→安(A)
利用計算時單位要統一,①如果W用焦,t用秒,則P的單位是瓦;②如果W用千瓦時,t用小時,則P的單位是千瓦。
10.計算電功率還可用右公式:P=I2R和P=U2/R
11.額定電壓(U0):用電器正常工作的電壓。另有:額定電流
12.額定功率(P0):用電器在額定電壓下的功率。
13.實際電壓(U):實際加在用電器兩端的電壓。另有:實際電流
當U > U0時,則P > P0 ;燈很亮,易燒壞.
當U < U0時,則P < P0 ;燈很暗,
當U = U0時,則P = P0 ;正常發光。
15.同一個電阻,接在不同的電壓下使用,則有;如:當實際電壓是額定電壓的一半時,則實際功率就是額定功率的1/4.例"220V100W"如果接在110伏的電路中,則實際功率是25瓦。)
16.熱功率:導體的熱功率跟電流的二次方成正比,跟導體的電阻成正比。
17.P熱公式:P=I^2Rt (I平方RT),(式中單位P→瓦(W);I→安(A);R→歐(Ω);t→秒。)
18.當電流通過導體做的功(電功)全部用來產生熱量(
電熱),則有:熱功率=電功率,可用電功率公式來計算熱功率。(如電熱器,電阻就是這樣的。)
生活用電
家庭電路:進戶線(火線和零線)→電能表→總開關→保險盒→用電器。
所有家用電器和
插座都是
並聯的.而用電器要與它的開關串聯接
火線。
保險絲:是用
電阻率大,熔點低的鉛銻合金製成。它的作用是當電路中有過大的電流時,它升溫達到熔點而熔斷,自動切斷電路,起到保險的作用。
引起電路電流過大的兩個原因:一是電路發生短路;二是用電器總功率過大.
安全用電的原則是:①不接觸低壓
帶電體;②不靠近高壓帶電體。
電和磁
磁性:物體吸引鐵,鎳,鈷等物質的性質。
任何磁體都有兩個磁極,一個是北極(N極);另一個是南極(S極)
磁極間的作用:同名磁極互相排斥,異名磁極互相吸引。
磁體周圍存在著磁場,磁極間的相互作用就是通過磁場發生的.
磁場的方向:小
磁針靜止時北極所指的方向就是該點的磁場方向。
磁感線:描述磁場的強弱,方向的假想曲線。不存在且不相交,北出南進.
磁場中某點的磁場方向,磁感線方向,小磁針靜止時北極指的方向相同。
地磁的北極在地理位置的南極附近;而地磁的南極則在地理的北極附近。但並不重合,它們的交角稱
磁偏角,中國學者沈括最早記述這一現象。
安培定則:用右手握
螺線管,讓四指彎向螺線管中電流方向,則大拇指所指的那端就是螺線管的北極(N極).
通電螺線管的性質:①通過電流越大,磁性越強;②
線圈匝數越多,磁性越強;③插入軟鐵芯,磁性大大增強;④通電螺線管的極性可用電流方向來改變。
電磁鐵:內部帶有鐵芯的螺線管就構成電磁鐵。
電磁鐵的特點:①磁性的有無可由電流的通斷來控制;②磁性的強弱可由改變電流大小和線圈的匝數來調節;③磁極可由電流方向來改變。
電磁繼電器:實質上是一個利用電磁鐵來控制的開關。它的作用可實現遠距離操作,利用低電壓,弱電流來控制高電壓,強電流。還可實現自動控制。
電話基本原理:振動→強弱變化電流→振動。
電磁感應:閉合電路的一部分導體在磁場中做
切割磁感線運動時,導體中就產生電流,這種現象叫電磁感應,產生的電流叫
感應電流。套用:發電機
感應電流的條件:①電路必須閉合;②只是電路的一部分導體在磁場中;③這部分導體做切割磁感線運動.
感應電流的方向:跟導體運動方向和磁感線方向有關。
發電機的原理:電磁感應現象。結構:定子和轉子。它將機械能轉化為電能.
磁場對電流的作用:通電導線在磁場中要受到磁力的作用。是由電能轉化為機械能。套用:電動機。
通電導體在磁場中受力方向:跟電流方向和磁感線方向有關.
電動機原理
電動機是利用通電線圈在磁場裡受力轉動的原理製成的。
換向器:實現交流電和直流電之間的互換。