基本介紹
- 中文名:離散拓撲
- 外文名:discrete topology
- 領域:數學
- 性質:拓撲
- 定義:非空集合所有子集組成的拓撲
- 拓撲空間:離散拓撲空間
離散拓撲(discrete topology)一類特殊的拓撲。設X為任意非空集合,則由X的所有子集組成的拓撲稱為X上的離散拓撲。它是X上的最細拓撲。由此得到的拓撲空間稱為離散...
拓撲是研究幾何圖形或空間在連續改變形狀後還能保持不變的一些性質的一個學科。它只考慮物體間的位置關係而不考慮它們的形狀和大小。拓撲英文名是Topology,直譯是地...
在拓撲學和相關數學領域中,離散空間是特別簡單的一種拓撲空間,在其中點都在特定意義下是相互孤立的。...
扎里斯基拓撲(Zariski topology)是代數簇與概形的研究中使用的一種拓撲。扎里斯基拓撲往往用指定空間中的閉子集的方式來定義。仿射空間A中的扎里斯基閉集就是某一族...
通常拓撲(usual topology)是一類特殊的拓撲。設Rn為n維歐幾里得空間,Rn中按歐幾里得空間的度量確定的拓撲在X上的相對拓撲稱為X上的通常拓撲。...
細拓撲(fine topology)是由給定的下半連續函式族確定的、比原來拓撲細的一種拓撲。拓撲是集合上的一種結構。細拓撲下的開集、閉集、閉包、極限等分別稱為細開...
離散集就是對集合中的每個點,都可以畫個圈圈把它和其他點分開來。離散集是拓撲空間的基本概念之一。...
在拓撲學和數學的其他相關領域裡,拓撲空間 X 的子空間是指在 X 中子集 S 及在 S 上賦予的由 X 的拓撲所誘導的拓撲.這個誘導出來的...
克魯爾拓撲(Krull topology)是一種拓撲。用以推廣有限伽羅瓦理論的基本定理。它是克魯爾(Krull,W.)於1928年對無限伽羅瓦群引入的。...
拓撲最佳化(topology optimization)是一種根據給定的負載情況、約束條件和性能指標,在給定的區域內對材料分布進行最佳化的數學方法,是結構最佳化的一種。結構最佳化可分為尺寸...
強拓撲是一種拓撲。局部凸空間X中原有的拓撲,相對於弱拓撲σ(X,X)稱為X的強拓撲。例如賦范線性空間的強拓撲即為範數拓撲。部凸空間是最重要的一類拓撲線性空間...
拓撲空間是歐幾里得空間的一種推廣。給定任意一個集,在它的每一個點賦予一種確定的鄰域結構便構成一個拓撲空間。拓撲空間是一種抽象空間,這種抽象空間最早由法國...