聚值集

聚值集(cluster set)是區域內點列趨於一邊界點時相應的函式值的極限值。函式的極值只是在一點的鄰域這樣一個很小範圍內的最大值和最小值,所以它是局部性的。

基本介紹

  • 中文名:聚值集
  • 外文名:cluster set
  • 領域:數學
  • 學科:複變函數
  • 對象:亞純函式
  • 性質:函式極限值
概念,複平面,亞純函式,全純函式,

概念

聚值集(cluster set)是區域內點列趨於一邊界點時相應的函式值的極限值。設D是複平面上任一區域,Γ是它的邊界,w=f(z)是定義於D內的單值亞純函式,這時對於Γ的每個點z0,可在複平面上定義與映射w=f(z)相聯繫的如下點集:如果存在點列{zn},使得當zn∈D,zn→z0時,f(zn)→α,則α稱為f(z)在z0處的一個聚值。它的全體記為CD(f,z0),稱為f在z0處的聚值集。

複平面

複數平面即是z=a+bi ,它對應的坐標為(a,b) .其中,a表示的是複平面內的橫坐標,b表示的是複平面內的縱坐標,表示實數a的點都在x軸上,所以x軸又稱為“實軸”;表示純虛數b的點都在y軸上,所以y軸又稱為“虛軸”。y軸上有且僅有一個實點即為原點"0"。
數學中,複數平面(complex plane)是用水平的實軸與垂直的虛軸建立起來的複數的幾何表示。它可視為一個具有特定代數結構笛卡兒平面(實平面),一個複數的實部用沿著 x-軸的位移表示,虛部用沿著 y-軸的位移表示。
複數平面有時也叫做阿爾岡平面,因為它用於阿爾岡圖中。這是以讓-羅貝爾·阿爾岡(1768-1822)命名的,儘管它們最先是挪威-丹麥土地測量員和數學家卡斯帕爾·韋塞爾(1745-1818)敘述的。阿爾岡圖經常用來標示複平面上函式極點零點的位置。
複平面的想法提供了一個複數的幾何解釋。在加法下,它們像向量一樣相加;兩個複數的乘法極坐標下的表示最簡單——乘積的長度或模長是兩個絕對值或模長的乘積,乘積的角度或輻角是兩個角度或輻角的和。特別地,用一個模長為 1 的複數相乘即為一個旋轉

亞純函式

除極點外為全純的函式為亞純函式,它是複變函數論研究的主要對象之一。
德國數學家外爾斯特拉斯、瑞典數學家米塔-列夫勒、法國數學家柯西等都是亞純函式理論的奠基人。1876年,外爾斯特拉斯證明了一個亞純函式可以表示為兩個整函式的商。第二年,瑞典數學家米塔-列夫勒推廣了外爾斯特拉斯的結果,證明在任意一個區域上的亞純函式皆可表示為兩個函式的商,其中每一個都在該區域內解析。法國數學家柯西也曾給出一種分解方法,對相當廣的一類亞純函式得到簡單的表示式。
近代亞純函式理論是20世紀20年代由芬蘭數學家奈望林納所創立。他在1925年發表了亞純函式的一個一般性理論,這個理論中有兩個基本定理分別被稱為第一基本定理和第二基本定理,從它們可以推出一系列關於亞純函式的值分布的結果,豐富並推進了前人的工作,產生了深遠影響。
亞純函式的術語是由法國數學家布里奧和布凱共同引進的。

全純函式

全純函式即為解析函式。是指能局部展成冪級數的函式,它是複變函數論研究的主要對象。解析函式類包括了數學及其在自然科學和技術套用中所遇到的大多數函式,這類函式關於算術、代數和分析的各種基本運算是封閉的,解析函式在其自然存在的域中代表唯一的一個函式,因此,對解析函式的研究具有特殊的重要性。
對解析函式的系統研究開始於18世紀。歐拉在這方面做出許多貢獻。拉格朗日最早希望建立系統的解析函式理論,他曾試圖利用冪級數的工具來發展這種理論,但未獲成功。
法國數學家柯西以他自己的工作被公認為是解析函式理論的奠基者。1814年他定義正則函式為導數存在且連續,他批判了過去許多錯誤的結果,創立了若干法則,以保證級數運算的可靠性。1825年他得到了著名的柯西積分定理,隨後又建立了柯西積分公式。柯西利用這些工具得到了正則函式在它的定義域內處處可表為收斂的冪級數的結果,其逆命題亦真。所以解析和正則是等價的。後來黎曼對柯西的工作做出了重要的發展。1900年,法國數學家古爾薩改善了正則函式的定義,只要求函式在定義域中處處有導數。
外爾斯特拉斯以冪級數為出發點開展對解析函式的研究。他定義正則函式為可以展開為冪級數的函式,創立了解析開拓理論,並利用解析開拓定義完全解析函式。柯西的方法限於研究完全解析函式的所謂單值分支,必須通過解析開拓才能和外爾斯特拉斯的理論統一起來。

相關詞條

熱門詞條

聯絡我們