中文文獻中芒德布羅的譯名一直不統一,芒德布羅本人使用的中文名字是“本華·曼德博”,可見於其耶魯大學網站個人主頁照片,為豎排繁體漢字手寫體。全國科學技術名詞審定委員會在數學、物理學、力學等幾個學科術語的譯名中,使用的都是“芒德布羅”。本華·曼德博(1924-2010,法語原文Benoît B. Mandelbrot),生於波蘭的立陶宛裔猶太家庭,主要成長教育經歷是在法國完成的,後長期在美國工作。如果追求音譯的準確,還應考慮Mandelbrot姓氏最初的來源,這是一個明顯地具有阿什肯那茲猶太姓氏特徵的姓(德語“杏仁”+“麵包”)。
這些數學怪物困擾數學家許多年,直至20世紀,被美國數學家Benoit B. Mandelbrot創立的分形幾何學(fractal geometry)徹底解決。Mandelbrot提出:我們之所以無法用幾何語言去描述這些數學怪物,是因為我們是在維數為整數的空間中,用維數同樣是整數的“尺子”對其丈量、描述;而維數不應該僅僅是整數,可以是任何一個正實數;只有在幾何對象對應的維數空間中,才能對該幾何體進行合理的整體或局部描述。以上圖的Koch曲線為例,其維數約為1.26,我們套用同樣為1.26維的尺子對其進行描述,比如取該曲線前1/4段作為單位為1的尺子去丈量這個幾何體,此幾何體長度為4。也正是因其維數介於1維與2維之間,所以此幾何體在1維下長度為無窮大,2維下面積為零。
Fractal這個詞是由Mandelbrot於1975創造的,來源於拉丁文“Fractus”,其英文意思是broken,即為“不規則、支離破碎”的物體。1967年,Mandelbrot在美國《Science》雜誌上發表題目為《英國的海岸線有多長》的劃時代論文,標誌著其分形思想萌芽的出現。1977年,Mandelbrot在巴黎出版的法文著作《Les objets fractals:forme,hasard et dimension》,1977年,在美國出版其英文版《Fractals:From,Chance,and Dimension》(《分形:形狀機遇和維數》),同年,他又出版了《The Fractal Geometry of Nature》(《大自然的分形幾何》),但是這三本書還未對社會和學術界造成太大的影響。直到1982年,《The Fractal Geometry of Nature》(《大自然的分形幾何》)第二版才得到歐美社會的廣泛關注,並迅速形成了“分形熱”,此書也被分形學界視為分形“聖經”。
發展史
分形學發展史上的重要里程碑
1883年 Cantor集合被創造
1895年 Weierstrass曲線被創造,此曲線特點是“處處連續,點點不可微”
1906年 Koch曲線被創造
1914年 Sierpinski三角形被創造
1919年 描述複雜幾何體的Hausdorff維問世
1951年 英國水文學家Hurst通過多年研究尼羅河,總結出Hurst定律
1967年 Mandelbrot在《Science》雜誌上發表論文《英國的海岸線有多長》
1975年 Mandelbrot創造“Fractals”一詞
1975年 Mandelbrot在巴黎出版的法文著作《Les objets fractals:forme,hasard et dimension》
1977年 Mandelbrot在美國出版英文著作《Fractals:Form,Chance,and Dimension》以及《The Fractal Geometry of Nature》
1982年 《The Fractal Geometry of Nature》第二版,並引發“分形熱”
1991年 英國的Pergman出版社創辦《Chaos,Soliton and Fractal》雜誌
1993年 新加坡世界科學出版社創辦《Fractal》雜誌
1998年 在馬爾他(Malta)的瓦萊塔(Valletta)召開了“分形98年會議”(5th International Multidisciplinary Conference)
2003年 在德國的Friedrichroda召開了“第三屆分形幾何和推測學國際會議”
2004年 在加拿大(Canada)的溫哥華(Vancouver)召開了“分形2004年會議”(8th International Multidisciplinary Conference)