橢圓簡介,定義,第一定義,第二定義,其他定義,方程,標準方程,參數方程,極坐標,幾何性質,基本性質,切線法線,光學性質,相關公式,面積公式,周長,離心率,焦半徑,幾何關係,點與橢圓,直線與橢圓,套用,手工畫法,手繪法一,手繪法二,手繪法三,
橢圓簡介
在數學中,橢圓是圍繞兩個焦點的平面中的曲線,使得對於曲線上的每個點,到兩個焦點的距離之和是恆定的。因此,它是圓的概括,其是具有兩個焦點在相同位置處的特殊類型的橢圓。橢圓的形狀(如何“伸長”)由其偏心度表示,對於橢圓可以是從0(圓的極限情況)到任意接近但小於1的任何數字。
橢圓是封閉式圓錐截面:由錐體與平面相交的平面曲線。橢圓與其他兩種形式的圓錐截面有很多相似之處:拋物線和雙曲線,兩者都是開放的和無界的。圓柱體的橫截面為橢圓形,除非該截面垂直於圓柱體軸線。
橢圓也可以被定義為一組點,使得曲線上的每個點的距離與給定點(稱為焦點)的距離與曲線上的相同點的距離的比值給定行(稱為directrix)是一個常數。該比率稱為橢圓的
偏心率。
也可以這樣定義橢圓,橢圓是點的集合,點其到兩個焦點的距離的和是固定數。
橢圓在物理,天文和工程方面很常見。
定義
第一定義
平面內與兩定點
、
的距離的和等於
常數 (
)的動點
P的軌跡叫做橢圓。
其中兩定點
、
叫做橢圓的
焦點,兩
焦點的距離
叫做橢圓的
焦距。
為橢圓的動點。
橢圓截與兩焦點連線重合的直線所得的
弦為
長軸,長為
。
可變為
。
第二定義
橢圓平面內到定點
(
c,0)的距離和到定直線
:
(
不在
上)的距離之比為常數
(即離心率
,0<
e<1)的點的
軌跡是橢圓。
其中定點
為橢圓的
焦點,定直線
稱為橢圓的
準線〈該定直線的方程是
(焦點在
x軸上),或
(焦點在
y軸上)〉。
其他定義
根據橢圓的一條重要性質:橢圓上的點與橢圓長軸(事實上只要是直徑都可以)兩端點連線的
斜率之積是定值,定值為
〈前提是長軸平行於x軸。若長軸平行於y軸,比如焦點在y軸上的橢圓,可以得到斜率之積為 -a/b=1/(e-1)〉,可以得出:
在
坐標軸內,動點(
)到兩定點(
)(
)的斜率乘積等於常數m(-1<m<0)。
注意:考慮到斜率不存在時不滿足乘積為常數,所以
無法取到,即該定義僅為去掉四個點的橢圓。
橢圓也可看做圓按一定方向作壓縮或拉伸一定
比例所得圖形。
方程
標準方程
在平面直角坐標系中,用方程描述了橢圓,橢圓的標準方程中的“標準”指的是中心在原點,對稱軸為坐標軸。
橢圓的標準方程有兩種,取決於焦點所在的坐標軸:
橢圓上任意一點到F1,F2距離的和為2a,F1,F2之間的距離為2c。而公式中的b=a-c。b是為了書寫方便設定的參數。
又及:如果中心在原點,但焦點的位置不明確在X軸或Y軸時,方程可設為mx+ny=1(m>0,n>0,m≠n)。即標準方程的統一形式。
橢圓的面積是πab。橢圓可以看作圓在某方向上的拉伸,它的參數方程是:x=acosθ , y=bsinθ
標準形式的橢圓在(x0,y0)點的
切線就是 :xx
0/a+yy
0/b=1。橢圓切線的
斜率是:-bx
0/ay
0,這個可以通過複雜的代數計算得到。
參數方程
x=acosθ , y=bsinθ。
求解橢圓上點到定點或到定直線距離的最值時,用參數坐標可將問題轉化為
三角函式問題求解
x=a×cosβ, y=b×sinβ a為
長軸長的一半 b為短軸長的一半
極坐標
(一個焦點在
極坐標系原點,另一個在θ=0的正方向上)
(e為橢圓的離心率=c/a)。
幾何性質
基本性質
1、範圍:焦點在
軸上
,
;焦點在
軸上
,
。
2、
對稱性:關於X軸對稱,Y軸對稱,關於原點中心對稱。
3、
頂點:(a,0)(-a,0)(0,b)(0,-b)。
5、離心率範圍:0<e<1。
6、離心率越小越接近於圓,越大則橢圓就越扁。
7、焦點(當中心為原點時):(-c,0),(c,0)或(0,c),(0,-c)。
9、P為橢圓上的一點,a-c≤PF1(或PF2)≤a+c。
10、橢圓的周長等於特定的正弦曲線在一個周期內的長度。
切線法線
定理1:設F1、F2為橢圓C的兩個
焦點,P為C上任意一點。若直線AB切橢圓C於點P,且A和B在直線上位於P的兩側,則∠APF1=∠BPF2。(也就是說,橢圓在點P處的切線即為∠F1PF2的外角平分線所在的直線)。
定理2:設F1、F2為橢圓C的兩個焦點,P為C上任意一點。若直線AB為C在P點的法線,則AB平分∠F1PF2。
上述兩定理的證明可以查看參考資料。
解析幾何法求證橢圓切線定理:
解:設C:((x^2)/(a^2))+((y^2)/(b^2))=1-----式1;
(a^2)-(b^2)=(c^2);
F1(-c,0);F2(c,0);P(xp,yp)
AB:(y-yp)=k(x-xp)=>y=kx+(yp-kxp);令m=yp-kxp=>AB:y=kx+m-----式2;
聯立式1和式2消去y得:((k^2)+((b^2)/(a^2)))(x^2)+2kmx+((m^2)-(b^2))=0;
因為直線AB切橢圓C於點P,所以上式只有唯一解,則:
4((km)^2)-4((k^2)+((b^2)/(a^2)))((m^2)-(b^2))=0=>m^2=((ak)^2)+(b^2);
m^2=(yp-kxp)^2=((yp)^2)+((kxp)^2)-2kxpyp=((ak)^2)+(b^2);
=>((a^2)-(xp^2))(k^2)+2xpypk+((b^2)-(yp^2));
由根的判別式得:4((xpyp)^2)-4((a^2)-(xp^2))((b^2)-(yp^2))=0;
所以k值有唯一解:k=(-2xpyp)/(2((a^2)-(xp^2)))=-xpyp/((a^2)-(xp^2));
由式1得:(a^2)-(xp^2)=(ayp/b)^2=>k=-(xp(b^2))/(yp(a^2));
m=yp-kxp=(((ypa)^2)+((xpb)^2))/(yp(a^2))=((ab)^2)/(yp(a^2))=(b^2)/yp;
設A0F1、B0F2分別過F1、F2垂直AB於A0、B0;
A0F1:(y-0)=(-1/k)(x+c)=>x+ky+c=0-----式3;
聯立式2和式3消去y得:x=-(km+c)/((k^2)+1);
聯立式2和式3消去x得:y= (m-kc)/((k^2)+1);
則:A0:(-(km+c)/((k^2)+1),(m-kc)/((k^2)+1));
|A0F1|^2=((m-kc)^2)/((k^2)+1));
同理:B0F2:(y-0)=(-1/k)(x-c);
=>B0:((c-km)/((k^2)+1),(m+kc)/((k^2)+1));
|B0F2|^2=((m+kc)^2)/((k^2)+1));
|PF1|^2=((xp+c)^2)+(yp^2);
|PF2|^2=((xp-c)^2)+(yp^2);
證明:若∠APF1=∠BPF2,則直角三角形A0PF1與直角三角形B0PF2相似;
=>|A0F1|/|PF1|=|B0F2|/|PF2|
=>(|A0F1|^2)/(|PF1|^2)=(|B0F2|^2)/(|PF2|^2)
=>(|PF2|^2)/(|PF1|^2)=(|B0F2|^2)/(|A0F1|^2)
((m+kc)^2)/((m-kc)^2)=(((xp-c)^2)+(yp^2))/(((xp+c)^2)+(yp^2));-----式4
m+kc=(b^2)/yp-(xpc(b^2))/(yp(a^2))=((a^2)-xpc)(b^2)/(yp(a^2));-----式5
m-kc=(b^2)/yp+(xpc(b^2))/(yp(a^2))=((a^2)+xpc)(b^2)/(yp(a^2));----式6
把式5和式6代入式4得:
(((a^2)-xpc)^2)/(((a^2)+xpc)^2)=(((xp-c)^2)+(yp^2))/(((xp+c)^2)+(yp^2));
=>(((a^2)-xpc)^2)(((xp+c)^2)+(yp^2))=(((a^2)+xpc)^2)(((xp-c)^2)+(yp^2))
=>(((a^2)-xpc)^2)((xp+c)^2)+(((a^2)-xpc)^2)(yp^2)=(((a^2)+xpc)^2)((xp-c)^2)+(((a^2)+xpc)^2)(yp^2)
=>[(((a^2)-xpc)^2)((xp+c)^2)-(((a^2)+xpc)^2)((xp-c)^2)]=[(((a^2)+xpc)^2)-(((a^2)-xpc)^2)](yp^2)
=>[((a^2)-xpc)(xp+c)+((a^2)+xpc)(xp-c)][((a^2)-xpc)(xp+c)-((a^2)+xpc)(xp-c)]=4xpc(ayp)^2
=>(2(a^2)xp-2(c^2)xp)(2c(a^2)-2c(xp^2))=4xpc(ayp)^2
=>4xpc(b^2)((a^2)-(xp^2))=4xpc(ayp)^2
=>(b^2)((a^2)-(xp^2))=(ayp)^2
=>(ab)^2=((ayp)^2)+((bxp)^2)
=>((xp^2)/(a^2))+((yp^2)/(b^2))=1等式成立,∠APF1=∠BPF2得證。
光學性質
橢圓的面鏡(以橢圓的長軸為軸,把橢圓轉動180度形成的立體圖形,其內表面全部做成反射面,中空)可以將某個焦點發出的光線全部反射到另一個焦點處;橢圓的
透鏡(某些截面為橢圓)有匯聚光線的作用(也叫凸透鏡),老花眼鏡、放大鏡和遠視眼鏡都是這種鏡片(這些光學性質可以通過反證法證明)。
相關公式
面積公式
(其中
分別是橢圓的長半軸、短半軸的長),或
(其中
分別是橢圓的長軸,短軸的長)。
證:
的面積,由於圖形的對稱性可知,只要求出第一象限的面積乘以4即可。
周長
T為橢圓
係數,可以由r/R的值,查表找出係數T值;r為橢圓短半徑;R為橢圓長半徑。
橢圓周長定理:橢圓的周長等於該橢圓短半徑與長半徑之和與該橢圓係數的積(包括正圓)。
附橢圓係數簡表:
橢圓與三角函式的關係
關於橢圓的周長等於特定的正弦曲線在一個周期內的長度的證明:
半徑為r的圓柱上與一斜平面相交得到一橢圓,該斜平面與水平面的夾角為α,截取一個過橢圓短徑的圓。以該圓和橢圓的某一交點為起始轉過一個θ角。則橢圓上的點與圓上垂直對應的點的高度可以得到f(c)=r tanα sin(c/r)。
r:圓柱半徑;
α:橢圓所在面與水平面的角度;
c:對應的弧長(從某一個交點起往某一個方向移動);
以上為證明簡要過程,則橢圓(x*cosα)^2+y^2=r^2的周長與f(c)=r tanα sin(c/r)的正弦曲線在一個周期內的長度是相等的,而一個周期T=2πr,正好為一個圓的周長。
離心率
橢圓離心率的定義為橢圓上焦距與長軸的比值,(範圍:0<X<1)。
e=c/a(0<e<1),因為2a>2c。離心率越大,橢圓越扁平;離心率越小,橢圓越接近於圓形。
橢圓的
焦準距:橢圓的
焦點與其相應準線(如焦點(c,0)與準線x=±a^2/c) 的距離為a^2/c-c=b^2/c
焦半徑
焦點在x軸上:|PF1|=a+ex |PF2|=a-ex(F1,F2分別為左右焦點)。
過左焦點的半徑r=a+ex。
焦點在y軸上:|PF1|=a+ey |PF2|=a-ey(F2,F1分別為上下焦點)。
橢圓的
通徑:過焦點的垂直於x軸(或y軸)的直線與橢圓的兩交點A,B之間的距離,即|AB|=2*b^2/a。
幾何關係
點與橢圓
點M(x0,y0)橢圓 x^2/a^2+y^2/b^2=1;
點在圓內:x0/a+y0/b<1;
點在圓上:x0/a+y0/b=1;
點在圓外:x0/a+y0/b>1;
直線與橢圓
y=kx+m ①
x/a+y/b=1 ②
由①②可推出xa+(kx+m)/b=1
相切△=0
相離△<0無交點
相交△>0 可利用
弦長公式:設A(x
1,y
1) B(x
2,y
2)
求中點坐標
根據
韋達定理 x
1+x
2=-b/a,x
1x
2=c/a
代入直線方程可求出 (y1+y2)/2=可求出中點坐標。
|AB|=d = √(1+k)[(x
1+x
2)-4x1*x2] = √(1+1/k)[(y
1+y
2)-4y
1y
2]
套用
例如:有一個
圓柱,被截得到一個
截面,下面證明它是一個橢圓(用上面的第一定義):
將兩個半徑與圓柱半徑相等的半球從圓柱兩端向中間擠壓,它們碰到截面的時候停止,那么會得到兩個公共點,顯然他們是截面與球的切點。
設兩點為F1、F2
對於截面上任意一點P,過P做圓柱的
母線Q1、Q2,與球、圓柱相切的大圓分別交於Q1、Q2
則PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2
由定義1知:截面是一個橢圓,且以F1、F2為焦點
用同樣的方法,也可以證明圓錐的斜截面(不通過底面)為一個橢圓
例:已知橢圓C:x^2/a^2+y^2/b^2=1(a>b>0)的離心率為√6/3,短軸一個端點到右焦點的距離為√3.
1.求橢圓C的方程.
2.直線l:y=x+1與橢圓交於A,B兩點,P為橢圓上一點,求△PAB面積的最大值.
3.在⑵的基礎上求△AOB的面積.
一 分析短軸的
端點到左右
焦點的距離和為2a,端點到左右焦點的距離相等(橢圓的定義),可知a=√3,又c/a=√6/3,代入得c=√2,b=√(a^2-c^2)=1,方程是x^2/3+y^2/1=1,
二 要求
面積,顯然以ab作為三角形的底邊,聯立x^2/3+y^2/1=1,y=x+1解得x1=0,y1=1,x2=-1.5,y2=-0.5.利用弦長公式有√(1+k^2))[x2-x1](中括弧表示絕對值)弦長=3√2/2,對於p點面積最大,它到弦的距離應最大,假設已經找到p到弦的距離最大,過p做弦的
平行線,可以 發現這個平行線是橢圓的切線是才會最大,這個切線和弦平行故斜率和弦的斜率=,設y=x+m,利用判別式等於0,求得m=2,-2.結合圖形得m=-2.x=1.5,y=-0.5,p(1.5,-0.5),
三 直線方程x-y+1=0,利用點到直線的距離公式求得√2/2,面積1/2*√2/2*3√2/2=3/4,
手工畫法
手繪法一
(1):畫長軸AB,短軸CD,AB和CD互垂平分於O點。
(2):連線AC。
(3):以O為圓心,OA為半徑作圓弧交OC延長線於E點。
(4):以C為
圓心,CE為半徑作
圓弧與AC交於F點。
(5):作AF的垂直平分線交CD延長線於G點,交AB於H點。
(6):截取H,G對於O點的對稱點H’,G’ ⑺:H,H’為長軸圓心,分別以HA、H‘B為半徑作圓;G,G’為短軸圓心,分別以GC、G‘D為半徑作圓。
用一根線或者細銅絲,鉛筆,2個圖釘或大頭針畫橢圓的方法:先畫好長短軸的十字線,在長軸上以圓點為中心先找2個大於短軸半徑的點,一個點先用圖釘或者大頭針栓好線固定住,另一個點的線先不要固定,用筆帶住線去找長短軸的4個頂點,此步驟需要多次定位,直到都正好能於頂點吻合後固定住這2個點,用筆帶住線,直接畫出橢圓:)使用細銅絲最好,因為線的
彈性較大畫出來不一定準確。
手繪法二
橢圓的
焦距│FF'│(Z)定義,為已知橢圓所構成的長軸X(ab)與短軸Y(cd)則以長軸一端A為圓心短軸Y為半徑畫弧,從長軸另一段點B引出與弧相切的線段則為該橢圓焦距,求證公式為2√{(Z/2)^2+(Y/2)^2}+Z=X+Z(平面內與兩定點F、F'的距離的和等於常數2a(2a>|FF'|)的動點P的軌跡叫做橢圓),可演變為z=√x^2-y^2(x>y>0)。Z兩端點F、F'為定點。取有韌性且伸縮係數越小越好的線,環繞線段AF'或者FB線段任意一組為長度,以該長度為固定三角形
周長,以F、F' 為定點、取構成該三角形上的第三點為動點畫弧則構成該橢圓。
手繪法三
環線長
。根據橢圓的圖形特徵,採用環線表示動點與焦點間的距離關係,形成統一的圓形環線作圖法。具體方法簡介:
(1)作圖工具為筆、大頭針、直尺和環形線。(環形線製作:取一段長度(30—50cm)和粗細適中彈性小的軟線、一段8mm長細電線空塑膠管,軟線從塑膠管中相向竄過,塑膠管將軟線夾緊,但用力可以抽動,形成能收縮和放長的環形線)。
(2)在作圖平面上作出各種圓形的定點和動點。
(3)將大頭針分別直立、固定在定點上;
(4)將符合長度的環形線套在大頭針外,畫筆由內向外拉直環線,通過調整環線的長度使筆尖剛好落在動點上;
(5)將畫筆移動一周,即可作出各種圓的圖形。
環線作圖方法的最大特點,就是把圓形的動點與焦點間的距離關係以環線的方式聯繫起來,而不受焦點數目的影響,環線內可以容納任意焦點數目,為探討3個及其3個以上焦點數目的
多焦點圓提供有效方法。環線作圖方法,屬於連續移動作圖法,適合不同大小的圓、橢圓和
卵圓等作圖。
若用該方法畫規定半長軸a和半短軸b的橢圓,則
,環線長