標架一般是完全決定空間坐標系來用的,所以空間坐標系也可以用標架 {O;e1,e2,e3} 來表示,這時候點 O 就可以叫做坐標原點,而向量 e1,e2,e3 都叫做坐標向量。
空間的定點 O ,連同三個不共面的有序向量 e1,e2,e3 的全體,叫做空間中的一個標架,記做 {O;e1,e2,e3} 。如果e1,e2,e3 都是單位向量,那么 {O;e1,e2,e3} 就叫做笛卡兒標架。兩兩互相垂直的標架叫做笛卡兒直角標架。在一般情況下, {O;e1,e2,e3} 叫做仿射標架。當空間取定標架 {O;e1,e2,e3} 後,空間全體向量的集合或者全體點的集合與全體有序三數組 x,y,z 的集合具有一一對應的關係,這種一一對應的關係就叫做空間向量或點的一個坐標系。此時,向量或點關於標架{O;e1,e2,e3} 的坐標,也稱為該向量或點關於由這標架所確定的坐標系的坐標。標架是空間坐標系的向量化。
基本介紹
- 中文名:標架
- 外文名:frame
- 適用範圍:數理科學