別稱 擺線是指一個圓在一條定直線上滾動時,圓周上一個定點的軌跡,又稱
圓滾線 、 旋輪線 。
圓上 定點的初始位置為坐標原點,定直線為x軸。當圓滾動j 角以後,圓上定點從 O 點位置到達P點位置。當圓滾動一周,即 j從O變動2π時,動圓上定點描畫出擺線的第一拱。再向前滾動一周, 動圓上定點描畫出第二拱,繼續滾動,可得第三拱,第四拱……,所有這些拱的形狀都是完全相同的 ,每一拱的拱高為2a(即圓的直徑),拱寬為2πa(即圓的周長)。
擺線 性質 到17 世紀,人們發現擺線具有如下性質:
1.它的長度等於旋轉圓直徑的 4 倍。尤為令人感興趣的是,它的長度是 一個不依賴於π的
有理數 。
3.圓上描出擺線的那個點,具有不同的速度——事實上,在特定的地方它甚至是靜止的。
擺線 4.當彈子從一個擺線形狀的容器的不同點放開時,它們會同時到達底部。
方程式 x=r*(t-sint); y=r*(1-cost)r為圓的半徑, t是圓的半徑所經過的弧度(滾動角),當t由0變到2π時,動點就畫出了擺線的一支,稱為一拱。
歷史 擺線最早出現可見於公元 1501 年出版的 C·鮑威爾的一本書中.但在 17 世 紀,大批卓越的數學家(如
伽利略 ,
帕斯卡 ,
托里拆利 ,
笛卡兒 ,
費爾馬 , 伍任,
瓦里斯 ,
惠更斯 ,
約翰·伯努利 ,
萊布尼茲 ,
牛頓 等等)熱心於研究這一曲線的性質.17 世紀是人們對數學力學和數學運動學愛好的年代,這能解釋人們為什麼對擺線懷有強烈的興趣。在這一時期,伴隨著許多發現,也出現了眾多有關發現權的爭議,剽竊的指責,以及抹煞他人工作的現象。這樣,作為一種結果,擺線被貼上了引發爭議的“
金蘋果 ”和“幾何的
海倫 ” 的標籤。
擺線的研究最初開始於
庫薩的尼古拉 ,之後
馬蘭·梅森 也有針對擺線的研究。1599年
伽利略 為擺線命名。1634年吉勒斯·德·羅貝瓦勒指出擺線下方的面積是生成它的圓面積的三倍。1658年
克里斯多佛·雷恩 也向人們指出擺線的長度是生成它的圓直徑的四倍。在這一時期,伴隨著許多發現,也出現了眾多有關發現權的爭議,甚至抹殺他人工作的現象,而因此擺線也被人們稱作“幾何學中的海倫”(The Helen of Geometers)。
相關故事 時鐘 時鐘已變成現代人不可或少的必備工具之一,沒有時鐘,人們將不知時間,許多重要的約會便會錯過,當各位在看錶的時候,不知可曾想過,時鐘裡面隱藏了些甚么道理,一砂一世界,許多我們視為理所當然的事都是先民流血流汗一點一滴累積而成的。
在時鐘裡面到底隱藏了什麼東西 將這些理論寫出來可是厚厚的一大本呢!回想以前的中世紀航海時代,時間的掌握是關乎全船人生命安危的大事,想要和大海搏鬥,時間是不可或缺的因素,古時候是以沙漏水鐘來計時,但這些計時工具相當不準確,為了增加船員生存的機會,發明精確的
計時器 變成了當時科學界的當務之急。
那時在義大利有一位年輕的科學家伽利略,有一次在
比薩斜塔 處意外地發現一個有趣的現象,教堂的吊燈來回擺動時,不管擺動的幅度大還是小,每擺動一次用的時間都相等。當時,他是以自己的心跳脈搏來計算時間的.從此以後,伽利略便廢寢忘食的研究起物理和數學來,他曾用自行制的滴漏來重新做
單擺 的試驗,結果證明了
單擺擺動的時間跟擺幅沒有關係,只跟單擺擺線的長度有關 .這個現象使伽利略想到或許可以利用單擺來製作精確的時鐘,但他始終並沒有將理想付之實行。
伽利略 的發現振奮了科學界,可是不久便發現單擺的
擺動周期 也不完全相等。原來,伽利略的觀察和實驗還不夠精確.實際上,擺的擺幅愈大,擺動周期就愈長,只不過這種周期的變化是很小的。所以,如果用這種擺來製作時鐘,擺的
振幅 會因為摩擦和空氣阻力而愈來愈小,時鐘也因此愈走愈快。
過了不久,荷蘭科學家
惠更斯 決定要做出一個精確的時鐘來.伽利略的單擺是在一段
圓弧 上擺動的,所以我們也叫做圓周擺。惠更斯想要找出一條曲線,使擺沿著這樣的曲線擺動時,擺動周期完全與擺幅無關,這群科學家放棄了物理實驗,純粹往數學曲線上去研究,經過不少次的失敗,這樣的曲線終於找到了,數學上把這種曲線叫做“擺線”,“等時曲線”或“旋輪線”。
動手驗證 如果你用硬紙板剪一個圓,在圓的邊緣固定一枝鉛筆,當這圓沿一條直線滾動時,鉛筆便會畫出一條擺線來.相信這樣的玩具許多人都已經看過玩過,以前的街上,常會看到街邊小販在兜售這種擺線玩具,許多人讚嘆擺線的美麗,但卻不知擺線與時鐘的相關性.鐘錶店裡面那些有鐘擺的時鐘,都是利用擺線性質製作出來的.由於擺線的發現,使得精確時鐘的製作不是夢想.這也使人類科技向前邁進一大步。
基本原理 擺線針輪行星傳動中,擺線輪齒廓曲線運用內嚙合發生圓產生的短幅外擺線。
有一發生圓(滾圓)半徑為rp',基圓半徑為rc',基圓內切於發生圓,當發生圓繞基圓作純滾動,其圓心Op分別處於Op1、Op2、Op3、Op4、Op5、Op6......各位置時,由此固結在發生圓平面上的點M分別經過M1、M2、M3、M4、M5、M6......各位置,由此發生圓周期滾動,發生圓上點M所形成的軌跡曲線即為短幅外擺線。
由以上擺線生成的幾何關係 若仍保持以上的內切滾動關係,將基圓和擺線視為
剛體 相對於發生圓運動,則形成了擺線圖形相對發生圓圓心Op作行星方式的運動,這就是行星擺線傳動機構的基本原理。
最速降線 在一個斜面上,擺兩條軌道,一條是直線,一條是曲線,起點高度以及終點高度都相同。兩個質量、大小一樣的小球同時從起點向下滑落,曲線的小球反而先到終點。這是由於曲線軌道上的小球先達到最高速度,所以先到達。然而,兩點之間的直線只有一條,曲線卻有無數條,那么,哪一條才是最快的呢?伽利略於1630年提出了這個問題,當時他認為這條線應該是一條弧線,可是後來人們發現這個答案是錯誤的。
1696年,瑞士數學家
約翰·伯努利 解決了這個問題,他還拿這個問題向其他數學家提出了公開挑戰。牛頓、萊布尼茲、洛比達以及雅克布·伯努利等解決了這個問題。這條最速降線就是一條擺線,也叫旋輪線。
義大利科學家伽利略在1630年提出一個
分析學 的基本問題——“一個質點在重力作用下,從一個給定點到不在它垂直下方的另一點,如果不計摩擦力,問沿著什麼曲線滑下所需時間最短。”。他說這曲線是圓,可是這是一個錯誤的答案。
瑞士數學家約翰.伯努利在1696年再提出這個最速降線的問題(problem of brachistochrone),徵求解答。次年已有多位數學家得到正確答案,其中包括牛頓、萊布尼茲、洛必達和
伯努利家族 的成員。這問題的正確答案是連線兩個點上凹的唯一一段旋輪線。
旋輪線與1673年荷蘭科學家惠更斯討論的擺線相同。因為鐘錶擺錘作一次完全擺動所用的時間相等,所以擺線(旋輪線)又稱等時曲線。
看Johann Bernoulli 對
最速降線問題 的beautiful解答:
如果使分成的層數n無限地增加,即每層的厚度無限地變薄,則質點的運動便趨於空間A、B兩點間質點運動的真實情況,此時折線也就無限增多,其形狀就趨近我們所要求的曲線——最速降線.而折線的每一段趨向於曲線的
切線 ,因而得出最速降線的一個重要性質:任意一點上切線和鉛垂線所成的角度的
正弦 與該點落下的高度的平方根的比是常數.而具有這種性質的曲線就是擺線.所謂擺線,它是一個圓沿著一條直線滾動(無滑動)時,圓周上任意一
點的軌跡 。
因此,最速降線就是擺線,只不過在最速降線問題中,這條擺線是上、下顛倒過來的罷了.
以上便是Johann Bernoulli當時所給最速降線問題的解答.當然,這個解答在理論上並不算十分嚴謹的.但是,這個解答所蘊含的基本觀點的發展,導致了一門新的學科——變分學.最速降線問題的最終而完備的解答,需要用到變分學的知識.
證明式 過原點半徑為r的擺線參數方程為
在這裡實參數t是在弧度制下,圓滾動的角度。對每一個給出的t,圓心的坐標為(rt, r)。 通過替換解出t可以求的笛卡爾坐標方程為
擺線的第一道拱由參數t在(0, 2π)區間內的點組成。
面積 一條由半徑為r的圓所生成的拱形面積可以由下面的參數方程界定:
微分,
於是可以求得
弧長 弧形的長度可以由下面的式子計算出: