平面方程

平面方程

“平面方程”是指空間中所有處於同一平面的點所對應的方程,其一般式形如Ax+By+Cz+D=0。

基本介紹

  • 中文名:平面方程
  • 外文名:Planar Equation
  • 分類:截距式、點法式、一般式、法線式
  • 學科領域:數學
  • 名詞屬性:數學術語
  • 截距式:x/a+y/b+z/c=1
  • 點法式:A(x-x0)+B(y-y0)+C(z-z0)=0
  • 一般式:Ax+By+Cz+D=0
  • 法線式:xcosα+ycosβ+zcosγ=p
定義,類型,一、截距式,二、點法式,三、一般式,四、法線式,

定義

在空間坐標系內,平面的方程均可用三元一次方程Ax+By+Cz+D=0來表示。
由於平面的點法式方程A(x-x0)+B(y-y)+C(x-x)=0是x,y,x的一次方程,而任一平面都可以用它上面的一點及它的法線向量來確定,所以任何一個平面都可以用三元一次方程來表示。

類型

一、截距式

設平面方程為Ax+By+Cz+D=0,若D不等於0,取a=-D/A,b=-D/B,c=-D/C,則得平面的截距式方程:x/a+y/b+z/c=1
它與三坐標軸交點分別為P(a,0,0),Q(0,b,0),R(0,0,c),其中,a,b,c依次稱為該平面在x,y,z軸上的截距

二、點法式

n為平面的法向量,n=(A,B,C),M,M'為平面上任意兩點,則有n·MM'=0,MM'=(x-x0,y-y0,z-z0),從而得平面的點法式方程:A(x-x0)+B(y-y0)+C(z-z0)=0
平面方程

  

  

  
三點求平面可以取向量積為法線
任一三元一次方程的圖形總是一個平面,其中x,y,z的係數就是該平面的一個法向量的坐標。
兩平面互相垂直相當於A1A2+B1B2+C1C2=0
兩平面平行或重合相當於A1/A2=B1/B2=C1/C2
點到平面的距離=abs(Ax0+By0+Cz0+D)/sqrt(A^2+B^2+C^2) 求解過程:面內外兩點連線在法向量上的映射Prj(小n)(帶箭頭P1P0)=數量積

三、一般式

Ax+By+Cz+D=0,其中A,B,C,D為已知常數,並且A,B,C不同時為零。

四、法線式

xcosα+ycosβ+zcosγ=p,其中cosα、cosβ、cosγ是平面法矢量的方向餘弦,p為原點到平面的距離。

相關詞條

熱門詞條

聯絡我們