巴拿赫不動點定理

巴拿赫不動點定理

巴拿赫不動點定理,又稱為壓縮映射定理壓縮映射原理,是度量空間理論的一個重要工具。它保證了度量空間的一定自映射的不動點的存在性和唯一性,並提供了求出這些不動點的構造性方法。這個定理是以斯特凡·巴拿赫命名的,他在1922年提出了這個定理。

基本介紹

  • 中文名:巴拿赫不動點定理
  • 又稱:壓縮映射定理或壓縮映射原理
  • 提出時間:1922年
  • 命名人:斯特凡·巴拿赫
定理,逆定理,推廣,

定理

設(X,d)為非空的完備度量空間。設T:XXX上的一個壓縮映射,也就是說,存在一個非負的實數q<1,使得對於所有X內的xy,都有:
那么映射TX內有且只有一個不動點x(這就是說,Tx=x)。更進一步,這個不動點可以用以下的方法來求出:從X內的任意一個元素x0開始,並定義一個疊代序列xn=Txn-1,對於n= 1,2,3,……。這個序列收斂,且極限x。以下的不等式描述了收斂的速率:
等價地:
滿足以上不等式的最小的q有時稱為利普希茨常數。
注意對於所有不同的xy都有d(Tx,Ty) < d(x,y)的要求,一般來說是不足以保證不動點的存在的,例如映射T: [1,∞) → [1,∞),T(x) =x+ 1/x,就沒有不動點。但是,如果空間X的,則這個較弱的假設也能保證不動點的存在。
當實際套用這個定理時,最艱難的部分通常是恰當地定義X,使得T實際上把元素從X映射到X,也就是說,Tx總是X的一個元素。

逆定理

巴拿赫不動點定理有許多逆定理,以下的一個是Czesław Bessaga在1959年發現的:
為一個抽象集合的映射,使得每一個疊代f都有一個唯一的不動點。設q為一個實數,0 < q < 1。那么存在X上的一個完備度量,使得f是壓縮映射,且q是壓縮常數。

推廣

一個有趣的事實是,若把某國的地圖縮小後印在該國領土內部,那么在地圖上有且僅有這樣一個點,它在地圖中的位置也恰巧表示它所落在的土地位置。證明如下:
  • 為了方便起見,這裡把地球近似看作是正球體。
  • 首先,按照經緯度可以給地球表面上每一個點標出坐標 (x, y),其中前元是經度、後元是緯度。又定義地面上任意兩點間的距離 d(A, B) 是 A 到 B 間大圓弧的弧長
  • 其次,把這國家的地圖上的點按照其所代表點的實際經緯度標出坐標 (u, v)。
  • 那么對於地圖上任意一點 P 而言,它既在地圖上表示地點 (up, vp),又實際在地面上占有點 (xp, yp)。顯然,這構成了從集合 S={P|P 是地面上的點且 P 屬於該國領土} 到其本身的映射,現記作 M(P)=M((up, vp))=(xp, yp)。
  • 又因為地圖是縮小的,即對於任意兩個地點 A∈S、B∈S 而言,d(A, B)>d(M(A), M(B)),也即 M(P) 是一個壓縮映射
  • 事實上,取實數 k>1 作為地圖比例尺的分母、即 1:k,那么由比例尺的定義知 d(A, B)=kd(M(A), M(B)),兩邊同除以 k 得 d(A, B)*(1/k)=d(M(A), M(B))。換言之,存在實數 q=1/k<1 滿足對於 S 內所有的 A 和 B,d(M(A), M(B))≤qd(A, B),這裡等號總是成立。
  • 現在將 S 視為以 d 為度量的空間,那么它顯然是一個完備度量空間。
  • 根據巴拿赫不動點定理,M 在 S 內有且僅有一個不動點,即該點恰好被印在它所表示的土地位置上。Q.E.D.
關於巴拿赫不動點定理的推廣,請參見無窮維空間中的不動點定理。

相關詞條

熱門詞條

聯絡我們