工程數學(2011年北京郵電大學出版社出版的圖書)

工程數學(2011年北京郵電大學出版社出版的圖書)

本詞條是多義詞,共24個義項
更多義項 ▼ 收起列表 ▲

《工程數學》是2011年北京郵電大學出版社出版的圖書。

基本介紹

  • 中文名:工程數學
  • 作者:賁亮、李茂生
  • 類別:高等數學
  • 出版社:北京郵電大學出版社
  • 出版時間:2011年1月
  • 開本:16 開
  • 裝幀:平裝
  • ISBN:9787563524914
內容簡介,圖書目錄,

內容簡介

本書包括了線性代數與機率論兩篇.線性代數部分的主要內容有:n階行列式,矩陣,向量與向量組,線性方程組,矩陣的特徵值、特徵向量與n階矩陣的對角化,二次型等.機率論部分的主要內容有:*事件及其機率,一維*變數及其分布,二維*變數及其分布,*變數的數字特徵等.
  本書可作為函授、遠程等成人業餘高等教育(工科)的教學用書,也可作為工科院校工程數學的參考用書.

圖書目錄

第一篇 線性代數 
 第1章 行列式 
  1.1 預備知識 
1.1.1 排列及其逆序數 
1.1.2 數域的基本概念 
  1.2 n階行列式的定義 
1.2.1 二、三階行列式 
1.2.2 n階行列式的定義 
  1.3 行列式的性質 
1.3.1 行列式的另外表示及行列式的轉置 
1.3.2 行列式的性質 
  1.4 行列式按一行(列)展開 
1.4.1 餘子式、代數餘子式 
1.4.2 行列式按一行(列)展開 
1.5 克萊姆法則 
  小結 
  複習題一 
 第2章 矩陣 
  2.1 矩陣的定義和運算 
2.1.1 矩陣的定義 
2.1.2 矩陣的運算 
  2.2 逆矩陣 
2.2.1 逆矩陣的定義 
2.2.2 矩陣可逆的條件及伴隨矩陣法求逆矩陣 
2.2.3 逆矩陣的性質 
  2.3 矩陣的分塊 
2.3.1 分塊矩陣的概念 
2.3.2 矩陣分塊原則 
2.3.3 準對角形矩陣
  2.4 矩陣初等變換
2.4.1 矩陣初等變換與矩陣等價的概念 
2.4.2 階梯形矩陣 
2.4.3 初等矩陣 
2.4.4 初等矩陣與矩陣初等變換的關係 
2.4.5 初等變換法求逆矩陣 
  2.5 矩陣的秩 
2.5.1 矩陣的r階子式 
2.5.2 矩陣秩的定義及求法 
  小結 
  複習題二 
 第3章 n維向量 
  3.1 n維向量及其運算 
3.1.1 n維向量的概念 
3.1.2 向量的線性運算 
  3.2 向量組的線性相關性 
3.2.1 向量組的線性組合 
3.2.2 向量組的線性相關與線性無關 
  3.3 向量組的秩 
3.3.1 向量組之間的等價關係 
3.3.2 向量組秩的概念 
3.3.3 向量組秩的求法 
  3.4 正交向量組與正交矩陣 
3.4.1 向量內積的概念與性質 
3.4.2 向量的模 
3.4.3 正交向量組 
3.4.4 正交矩陣 
  小結 
  複習題三 
 第4章 線性方程組 
  4.1 線性方程組的初等變換 
  4.2 線性方程組有解的判定 
4.2.1 線性方程組的係數矩陣和增廣矩陣 
4.2.2 線性方程組有解的判定 
4.2.3 齊次線性方程組有非零解的判定 
  4.3 線性方程組解的結構 
4.3.1 齊次線性方程組解的構成 
4.3.2 非齊次線性方程組解的構成 
  小結 
  複習題四 
 第5章 方陣的對角化與二次型 
  5.1 特徵值與特徵向量 
5.1.1 特徵值與特徵向量的概念 
5.1.2 特徵值與特徵向量的性質 
5.1.3 求特徵值與特徵向量的方法 
  5.2 相似矩陣 
5.2.1 矩陣相似的概念 
5.2.2 相似矩陣的性質 
  5.3 方陣可對角化的條件 
5.3.1 方陣相似於對角形矩陣的充分必要條件(ⅰ) 
5.3.2 方陣相似於對角形矩陣的充分條件 
5.3.3 方陣相似於對角形矩陣的充分必要條件(ⅱ) 
  5.4 實對稱矩陣的對角化 
5.4.1 對稱矩陣 
5.4.2 實對稱矩陣及其特性 
5.4.3 用正交矩陣化實對稱矩陣為對角形矩陣 
  5.5 二次型 
5.5.1 二次型及矩陣表示 
5.5.2 變數組間的線性變換 
5.5.3 二次型的標準形 
5.5.4 二次型的規範形 
5.5.5 正定二次型 
  小結 
  複習題五 
第二篇 機率論 
 第6章 隨機事件及其機率 
  6.1 隨機事件及其運算 
6.1.1 幾個基本概念 
6.1.2 事件間的關係與運算 
6.1.3 事件間的運算規律 
  6.2 事件的機率及其性質 
6.2.1 古典概型 
6.2.2 機率的統計定義 
6.2.3 機率的公理化定義 
6.2.4 機率的性質 
  6.3 條件機率 
6.3.1 條件機率 
6.3.2 關於條件機率的三個重要公式 
  6.4 獨立性 
6.4.1 事件的獨立性 
6.4.2 獨立重複試驗概型 
  小結 
  複習題六 
 第7章 隨機變數及其分布 
  7.1 隨機變數 
  7.2 離散型隨機變數及其分布 
7.2.1 分布律及其性質 
7.2.2 幾個常用離散型機率分布 
  7.3 連續型隨機變數及其分布 
7.3.1 機率密度函式及其性質 
7.3.2 幾種常用分布 
  7.4 分布函式及其性質 
7.4.1 分布函式的定義 
7.4.2 分布函式的性質 
  7.5 常態分配 
7.5.1 常態分配的密度函式 
7.5.2 常態分配的分布函式 
7.5.3 常態分配的計算 
  7.6 隨機變數函式的分布 
7.6.1 離散型隨機變數函式的分布 
7.6.2 連續型隨機變數函式的分布 
  7.7 二維隨機變數 
7.7.1 多維隨機變數的概念 
7.7.2 二維隨機變數及分布函式 
7.7.3 二維離散型隨機變數 
7.7.4 二維連續型隨機變數 
  小結 
  複習題七 
 第8章 隨機變數的數字特徵 
  8.1 數學期望 
8.1.1 離散型隨機變數的數學期望 
8.1.2 連續型隨機變數的數學期望 
8.1.3 隨機變數函式的數學期望 
8.1.4 數學期望的性質 
  8.2 方差與矩 
8.2.1 方差的定義 
8.2.2 方差的性質 
8.2.3 矩 
  8.3 協方差與相關係數 
8.3.1 二維隨機變數的數學期望和方差的概念 
8.3.2 協方差 
8.3.3 相關係數 
  小結 
  複習題八 
附錄1 標準常態分配函式表 
附錄2 泊松分布表(1) 
附錄3 泊松分布表(2) 
附錄4 排列組合簡介 
習題答案

相關詞條

熱門詞條

聯絡我們