勒貝格一斯蒂爾傑斯測度簡稱(L-S)測度,是直線上勒貝格測度的推廣。
基本介紹
- 中文名:勒貝格-斯蒂爾傑斯測度
- 外文名:Lebesgue-Stieltjes measure
- 適用範圍:數理科學
勒貝格一斯蒂爾傑斯測度簡稱(L-S)測度,是直線上勒貝格測度的推廣。
勒貝格一斯蒂爾傑斯測度簡稱(L-S)測度,是直線上勒貝格測度的推廣。簡介勒貝格一斯蒂爾傑斯測度簡稱(L-S)測度,是直線上勒貝格測度的推廣。設g(x)是定義在R上的單調上升的右連續函式,分三步完成相應(L-S)測度的定義...
勒貝格-斯蒂爾傑斯測度簡稱(L-S)測度,是直線上勒貝格測度的推廣。勒貝格-斯蒂爾傑斯測度空間是定義了勒貝格-斯蒂爾傑斯測度的測度空間。簡介 測度空間 測度空間是定義了測度的可測空間。設(Ω,𝓕)是可測空間,μ是𝓕上的測度,(Ω,...
測度理論是實變函式論的基礎。所謂測度,通俗的講就是測量幾何區域的尺度。 我們知道直線上的閉區間的測度就是通常的線段長度; 平面上一個閉圓盤的測度就是它的面積。形成意義 定理的形成 縱觀勒貝格積分和勒貝格-斯蒂爾傑斯積分理論,...
勒貝格測度空間(Rⁿ,L,m)和勒貝格-斯蒂爾傑斯測度空間(Rⁿ,L,m)都是完備測度空間,而博雷爾測度空間(Rⁿ,B,μ)是不完備測度空間。性質 完備測度具有一些良好性質:1.若測度μ完備,則凡是μ幾乎處處相等的函式,或者都可...
1902年法國數學家H.L.勒貝格出色地完成了這一工作,建立了以後人們稱之為勒貝格積分的理論,接著又綜合R-S積分思想產生了勒貝格-斯蒂爾傑斯積分(簡稱l-S積分)。20世紀初又發展成建立在一般集合上的測度和積分的理論,簡稱測度論。引...
黎曼-斯蒂爾傑斯(簡記為R-S)積分和勒貝格-斯蒂爾傑斯(簡記為L-S)積分的統稱。由荷蘭數學家斯蒂爾傑斯提出,故名。函式 f(x) 關於函式 g(x) 的(R-S)積分用 f(x)dg(x) 表示,是黎曼(簡記為R) 積分的直接推廣,當 g(x...
譜分布函式亦稱譜函式,是平穩過程理論的重要概念。譜分布函式 F 不是惟一的,但它們之間最多相差一常數。由相關函式 R(𝜏) 與由協方差函式 𝛤(r) 確定的譜分布函式不同之處是它們對應的勒貝格-斯蒂爾傑斯測度在 0...
它包括勒貝格(Henri Léon Lebesgue)的測度、可測集、可測函式和積分以及少許更一般的勒貝格-斯蒂爾傑斯測度 (Lebesgue-Stieltjes Measure)和積分的理論(見勒貝格積分)。這種積分比黎曼積分是更為普遍適用和更為有效的工具,例如微積分...
要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質。環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。除環 ...
設(Ω,F,μ)是測度空間,f(x)是(Ω,F)中的可測函式,建立抽象積分∫f(x)dμ的步驟與建立勒貝格積分或勒貝格-斯蒂爾傑斯積分的步驟基本相同,只需在定義中將勒貝格測度換成一般測度μ,相應的非負簡單函式、非負可測函式、一般...
要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質。環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。賦值環...
要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質。環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。除環 ...
要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質。環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。模 一...
勒貝格-斯蒂爾傑斯積分:勒貝格積分的推廣,推廣方式類似於黎曼-斯蒂爾傑斯積分,用有界變差函式g代替測度 。哈爾積分:由阿爾弗雷德·哈爾於1933年引入,用來處理局部緊拓撲群上的可測函式的積分,參見哈爾測度。伊藤積分:由伊藤清於二十...
要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質.環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。環論...
要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質。環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。
要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質.環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。環論 ...
要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質。環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。完全環...
要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質。環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。馮·...
要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質。環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。雅各布...
要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質、環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。右擬...
要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質。環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。環論 ...
要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質。環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。環論 ...
要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質。環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。微分 ...
設(Ω,F)是可測空間,μ是F上的測度,(Ω,F,μ)稱為測度空間。當μ是F上的有限測度(σ有限測度)時,相應地稱(Ω,F,μ)是有限測度空間(σ有限測度空間)。在各種特殊情況下,相應有勒貝格測度空間、勒貝格-斯蒂爾傑斯測度空間...
要把R上的勒貝格測度和勒貝格-斯蒂爾傑斯測度以及相應的積分理論推廣到更一般的集合上,就需要做一系列奠基工作,其中之一是建立一些特殊的集類並研究其性質。環以及半環、σ環、代數、σ代數等重要集類正是為了這一目的而引入的。理想 ...